Analysis of Temperature Effects in the Design of NOT Gate Based on CNTFET

Document Type : Research Paper

Authors

1 Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy, 70125, Bari, Italy

2 Electronic Devices Laboratory, Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126, Bari, Italy

Abstract

   This paper presents a procedure to analyze the effects of temperature in CNTFET-based NOT gate using a compact semi-empirical model, already proposed by us. The proposed analysis allows to determine the noise margin and static power in different voltage supplies and temperature conditions. In particular the noise margin decreases and static power increases with temperature, so it can be asserted that low temperature is the most advantageous condition. This is true except for the case 100 K - 200 mV where noise margin is much lower than the expected value due to the double peak in gain function. In terms of power, it should be also noted that decreasing temperature from 200 K to 100 K does not produce any remarkable result. The proposed procedure can be applied to analyze the effects of temperature in the design of A/D circuits based on CNTFET.

Keywords

Main Subjects


  1. Marani, R., Perri, A. G., “CNTFET Modelling for Electronic Circuit Design”, ElectroChemical Transactions, 23 (2009) 429 - 437.
  2. Feng, T., Liu, N., Wang, S., Qin, C., Shi, S., Zeng, X., Liu, G., “Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review”, Advances in Nano Research, 10 (2021) 559-576.
  3. Chuan, M. W., “Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic”, Advances in Nano Research, 10 (2021) 415-422.
  4. Gelao, G., Marani, R., Diana, R., Perri, G., “A Semi-Empirical SPICE Model for n-type Conventional CNTFETs”, IEEE Transactions on Nanotechnology, 10 (2011) 506-512.
  5. Marani, R., Perri, A. G., “A Compact, Semi-empirical Model of Carbon Nanotube Field Effect Transistors oriented to Simulation Software”, Current Nanoscience, 7 (2011) 245-253.
  6. Marani, R., Perri, A. G., “A DC Model of Carbon Nanotube Field Effect Transistor for CAD Applications”, International Journal of Electronics, 99 (2012) 427 - 444.
  7. Marani, R., Gelao, G., Perri, A. G., “Modelling of Carbon Nanotube Field Effect Transistors oriented to SPICE software for A/D circuit design”, Microelectronics Journal, 44 (2013) 33-39.
  8. Marani, R., Perri, A. G., “Modelling of CNTFETs for Computer Aided Design of A/D Electronic Circuits”, Current Nanoscience, 10 (2014) 326-333.
  9. Gelao, G., Marani, R., Pizzulli, L., Perri, A. G., “A Model to Improve Analysis of CNTFET Logic Gates in Verilog-A-Part I: Static Analysis”, Current Nanoscience, 11 (2015) 515-526.
  10. Gelao, G., Marani, R., Pizzulli, L., Perri, A. G., “A Model to Improve Analysis of CNTFET Logic Gates in Verilog-A-Part II: Dynamic Analysis”, Current Nanoscience, 11 (2015) 770-783.
  11. Marani, R., Perri, A. G., “A Simulation Study of Analogue and Logic Circuits with CNTFETs”, ECS Journal of Solid State Science and Technology, 5 (2016) M38-M43.
  12. Verilog-AMS language reference manual, Version 2.2, (2014).
  13. Marani, R., Perri, A. G., “Analysis of Temperature Effects in the Design of CNTFET-based Analog Circuits”, International Journal of Nanoscience and Nanotechnology, 18(1) (2022) 45-53.
  14. Datta, S., “Cambridge Studies in Semiconductor Physics and Microelectronic Engineering 3.”, New York: Cambridge University Press, (1995).
  15. Allen, P. E., Holberg, D. R., “CMOS Analog Circuit Design”, Oxford University Press, United Kingdom, (2013).
  16. Marani, R., Perri, A. G., “Static Simulation of CNTFET-based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14 (2018) 121-131.
  17. Marani, R., Perri, A. G., “Dynamic Simulation of CNTFET-based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14 (2018) 277-288.
  18. Lee, C-S., Pop, E., Franklin, A. D., Haensch, W., Wong, H.-S. P., “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nmRegime—Part I: Intrinsic Elements”, IEEE Transactions on Electron Devices, 62 (2015) 3061-3069.
  19. Lee, C-S., Pop, E., Franklin, A. D., Haensch, W., Wong, H.-S. P., “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nm Regime—Part II:Extrinsic Elements, Performance Assessment,and Design Optimization”, IEEE Transactions on Electron Devices, 62 (2015) 3070-3078.
  20. Marani, R., Perri, A. G., “Temperature Dependence of I-V Characteristics in CNTFET Models: A Comparison”, International Journal of Nanoscience and Nanotechnology, 17(1) (2021) 33-39.
  21. Marani, R., Gelao, G., Perri, A. G., “A Compact Noise Model for C-CNTFETs”, ECS Journal of Solid State Science and Technology, 9 (2017) M118-126.
  22. Marani, R., Perri, A. G., “Noise Performance in Current Mirror Circuit based on CNTFET and MOSFET”, Proceedings of SMACD 2021 (International Conference on Synthesis, Modelling, Analysis and Simulation Methods and Applications to Circuit Design), (2021) Erfurt, Germany, 140-143.
  23. Marani, R., Perri, A. G., “Comparative analysis of noise in current mirror circuits based on CNTFET and MOS Devices”, International Journal of Nanoscience and Nanotechnology, 17(2) (2021) 121-129.
  24. Gelao, G., Marani, R., Perri, G., “Analysis of Limits of CNTFET Devices through the Design of a Differential Amplifier”, ECS Journal of Solid State Science and Technology, 10(6) (2021).
  25. Marani, R., Perri, A. G., “A Simulation Study of Noise Behavior in Basic Current Mirror using CNTFET and MOSFET”, International Journal of Emerging Technology and Advanced Engineering, 11(7) (2021) 13-18.
  26. Marani, R., Perri, A. G., “Effects of Parasitic Elements of Interconnection Lines in CNT Embedded Integrated Circuits”, ECS Journal of Solid State Science and Technology, 9 (2020).
  27. Marani, R., Perri, A. G., “A Procedure to Analyze a CNTFET-based NOT gate with Parasitic Elements of Interconnection Lines”, International Journal of Nanoscience and Nanotechnology, 17(3) (2021) 161-171.