Different PVA-Hydroxypropyl Guar Gum Irradiated Nanosilica Composite Membranes for Model Drug Delivery Device

Document Type : Research Paper


Department of Chemistry, Bijoy Krishna Girls’ College, Howrah, West Bengal, India-711101.


   High strength and elastic biodegradable membranes are of great demand in modern technology. Similar membranes have been developed by irradiating different weight poly (vinyl alcohol) (PVA) – hydroxypropyl guar gum (HPG) blends and followed by combining with ex situ nanosilica. Polarized light microscopic (PLM) study indicates that electron beam irradiation produced crosslinks and developed crystallinity in PVA-HPG matrix. Atomic force microscopic analysis shows that 1 wt.% nanosilica produced finer dispersion in both high and low molecular weight PVA-HPG matrix resulting nearly 4.5 times higher mechanical strength and controlled swelling-deswelling property e.g., low molecular weight PVA with 1wt% nanosilica content show swelling ratio 3.5. Greater nanosilica and PVA-HPG interaction was observed in low molecular PVA-HPG composite membranes than high molecular weight PVA-HPG composite membranes which finally showed better efficacy towards drug retention and elution under physiological condition.