Ionic Liquid Attached to Colloidal Silica ‎Nanoparticles as Catalyst for the ‎Synthesis of Pyrimidines

Document Type : Research Paper


1 ‎Young Researchers and Elite Club, Kashan Branch, Islamic Azad University, P.O. Box ‎‎87159-98151, Kashan, Iran

2 Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Iran


   Bis (1(3-trimethoxysilylpropyl)-3-methyl-imidazolium) copper tetrachloride tethered to colloidal silica nanoparticles have been used as an efficient catalyst for the preparation of 2,4-diamino-6-arylpyrimidine-5-carbonitrile derivatives by the one-pot reaction of aromatic aldehydes, malononitrile, and guanidinehydrochlorideunder conventional heating, microwave and ultrasound irradiations. The catalyst was characterized by 1H NMR spectroscopy,dynamic light scattering (DLS), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The remarkable advantages of this methodology are easy work-up, short reaction times, high to excellent product yields, operational simplicity, low catalyst loading and use of ultrasonic irradiation as a valuable and powerful technology.


Main Subjects

  1. Bennett, L. R., Blankley, C. J., Fleming, R. W., Smith, R. D., Tessman, D. K., “Antihypertensive activity of 6-arylpyrido [2,3-d] pyrimidin-7-amine derivatives”, J. Med. Chem., 24 (1981) 382-389.
  2. Mohamed, T. A., Shaaban, I. A., Farag, R. S., Zoghaib, W. M., Afifi, M. S., “Synthesis, antimicrobial activity, structural and spectral characterization and DFT calculations of Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile”, Spectrochim. Acta Mol. Biomol. Spectrosc., 135 (2015) 417–427.
  3. Rostamizadeh, S., Nojavan, M., Aryan, R., Sadeghian, H., Davoodnejad, M., “A novel and efficient synthesis of pyrazolo [3, 4-d] pyrimidine derivatives and the study of their anti-bacterial activity”, Chin. Chem. Lett., 24 (2013) 629-632.
  4. Liu, Z., Wu, S., Wang, Y., Li, R., Wang, J., Wang, L., Zhao, Y., Gong, P., “Design, synthesis and biological evaluation of novel thieno[3, 2-d] pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents”, Eur. J. Med. Chem., 87 (2014) 782-793.
  5. Manohar, S., Rajesh, U. C., Khan, S. I., Tekwani, B. L., Rawat, D. S. “Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity”, ACS Med. Chem. Lett., 3 (2012) 555−559.
  6. Kotaiah, Y., Harikrishna, N., Nagaraju, K., Venkata Rao, C., “Synthesis and antioxidant activity of 1, 3, 4-oxadiazole tagged thieno[2, 3-d]pyrimidine derivatives”, Eur. J. Med. Chem., 58 (2012) 340-345.
  7. Schenone, S., Radi, M., Musumeci, F., Brullo, C., Botta, M., “Biologically driven synthesis of Pyrazolo[3,4-d]pyrimidines  as protein Kinase inhibitors: an old scaffold as a new tTool for medicinal chemistry and chemical biology studies”, Chem. Rev., 114 (2014) 7189–7238.
  8. Waring, M. J., Baker, D. J., Bennett, S. N. L., Dossetter, A. G., Fenwick, M., Garcia, R., Georgsson, J., Groombridge, S. D., Loxham, S., MacFaul, P. A., Maskill, K. G., Morgan, D., Morrell, J., Pointon, H., Robb, G. R., Smith, D. M., Stokes, S., Wilkinson, G., “Discovery of a series of 2-(pyridinyl) pyrimidines as potent antagonists of GPR40”, Med. Chem. Commun., 6 (2015) 1024-1029.
  9. Sheibani, H., Saljoogi, A. S., Bazgir, A., “Three-component process for the synthesis of  4-amino-5- pyrimidinecarbonitriles under thermal aqueous conditions or microwave irradiation”, Arkivoc, (2008) 115-123.
  10. Zahedifar, M., Sheibani, H., “Rapid three-component synthesis of pyrimidine and pyrimidinone derivatives in the presence of Bi(NO3)3·5H2O as a mild and highly efficient catalyst”, Res. Chem. Intermed., 41 (2015) 105-111.
  11. Zhuang, Q., Han, H. X., Wang, S., Tu, S., Rong, L., “Efficient and facile three-component reaction for the synthesis of 2-amine-4, 6-diarylpyrimidine under solvent-free conditions”, Synth. Commun., 39 (2009) 516–522.
  12. Tao, S., Xia, S., Rong, L., Cao, C., Tu, S., “An efficient and facile synthesis of polydentate ligand: pyridylpyrimidine-2-amine under solvent-free conditions”, Res. Chem. Intermed., 38 (2012) 2065–2073.
  13. Ahmadi, S. J., Sadjadi, S., Hosseinpour, M., “Granulated copper oxide nanocatalyst: a mild and efficient reusable catalyst for the one-pot synthesis of 4-amino-5-pyrimidinecarbonitriles under aqueous conditions”, Monatsh. Chem., 142 (2011) 1163–1168.
  14. Deshmukh, M. B., Anbhule, P. V., Jadhav, S. D., Jagtap, S. S., Patil, D. R., Salunkhe, S. M., Sankpal, S. A., “A novel and environmental friendly, one-step synthesis of 2, 6-Diamino-4-phenyl pyrimidine-5-carbonitrile using potassium carbonate in water”, Indian J. Chem. B, 47 (2008) 792-795.
  15. Tari, F., Manteghian, M., Tazarv, S., “Synthesis of Nickel/ Molybdenum Oxide Bimetallic Nanoparticles via Microwave Irradiation Technique”, Int. J. Nanosci. Nanotechno, 14 (2018) 57-64.
  16. Jafarirad, S., Kordi, M., Kosari-Nasab, M., “Investigation on Microstructure, Lattice and Structural Chemistry of Biogenic Silver Nanoparticles”, Int. J. Nanosci. Nanotechno., 14 (2018) 197-206.
  17. Jafari, V., Allahverdi, A., Synthesis and Characterization of Colloidal Nanosilica via an Ultrasound Assisted Route Based on Alkali Leaching of Silica Fume”, Int. J. Nanosci. Nanotechnol., 10 (2014) 145-152.
  18. Safaei-Ghomi, J., Masoomi, R., “An efficient sonochemical synthesis of novel fulleropyrazolines through the reaction of [60]fullerene with phenylhydrazones and PhI(OAc)2”, Scientia Iranica C, 22 (2015) 894-902.
  19. Gupta, M., Paul, S., Gupta, R., “General characteristics and applications of microwaves in organic synthesis”, Acta Chim. Slov., 56 (2009) 749–764.
  20. Mohaqeq, M., Safaei-Ghomi, J., Shahbazi-Alavi, H., Teymuri, R., “ZnAl2O4 Nanoparticles as efficient and reusable heterogeneous catalyst for the synthesis of 12-phenyl-8,12-dihydro-8,10-dimethyl-9H-naphtho[1′,2′:5,6]pyrano[2,3-d] pyrimidine-9,11-(10H)-diones under microwave irradiation”, Polycyclic Aromat. Compd., 37 (2017) 52-62.
  21. Estifaee, P., Haghighi, M., Mohammadi, N., Rahmani, F., “CO oxidation over sonochemically synthesized Pd–Cu/Al2O3 nanocatalyst used in hydrogen purification: effect of Pd loading and ultrasound irradiation time”, Ultrason. Sonochem., 21 (2014) 1155-1165.
  22. Cravotto, G., Cintas, P., “Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications”, Chem. Soc. Rev., 35 (2006)180–196.
  23. Shabalala, N., Pagadala, R., Jonnalagadda, S. B., “Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles”, Ultrason. Sonochem., 27 (2015) 423-429.
  24.  Chen, M. N., Mo, L. P., Cui, Z. S.,  Zhang, Z. H., “Magnetic nanocatalysts: Synthesis and application in multicomponent reactions”, Curr Opin Green Sust Chem., 15 (2019) 27-37.
  25.  Zhang, M., Liu, Y. H., Shang, Z. R., Hu, H. C., Zhang, Z. H., “Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation”, Catal. Commun., 88 (2017) 39-44.
  26. Bootz, A., Vogel, V., Schubert, D., Kreuter, J., “Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles”, Eur. J. Pharm. Biopharm., 57(2004) 369–375.
  27. Na, K., Zhang, Q., Somorjai, G. A., “Colloidal metal nanocatalysts: synthesis, characterization, and catalytic applications”, J. Clust. Sci., 25 (2014) 83–114.
  28. Rong, L., Han, H., Gao, L., Dai, Y., Cao, M., Tu, S., “Efficient and facile synthesis of 2, 4-diamino-6-arylpyrimidine-5-carbonitrile under solvent-free conditions”, Synth. Commun., 40 (2010) 504-509.