An Orderly-Arranged Attapulgite/PIM-1 Mixed Matrix Membranes for Gas Separation

Document Type : Research Paper

Authors

1 State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China

2 School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China

3 Institute of Separation Material and Process Control, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China

10.22034/ijnn.2023.2011036.2424

Abstract

   Developing mixed matrix membranes (MMMs) is a way to fabricate high permeation-performance membranes. The arrangement of the fillers, especially the specific-shaped ones, in the membranes has a non-negotiable influence on the gas-transport performance. With the assistance of a magnetic field, the Fe3O4 decorated attapulgite (ATP) is orderly arranged into the polymer of intrinsic microporosity (PIM-1) to form ATP/PIM-1 MMMs. Moreover, Fe3O4 decorated ATPs were coated with polydimethylsiloxane to avoid the polymeric matrix filling the cavity of ATPs. Chemical compositions of modified ATPs were determined by Fourier transform infrared spectroscopy. Morphologies of modified ATPs were observed via transmission electron microscopy and wide-angle X-ray diffraction. Morphologies of ATP/PIM-1 MMMs investigated by field-emission scanning electron microscopy. The effects of the vertically-arranged, parallelly-arranged, and disorderly-arranged ATPs on gas permeation-separation performances of ATP/PIM-1 MMMs were also reported. The parallelly-arranged ATP/PIM-1 MMMs display the best gas permeability compared with vertically-arranged and disorderly-arranged ATP/PIM-1 MMMs. And introducing the parallelly-arranged ATP brings about higher gas permeability and selectivity. Compared with the original PIM-1 membrane, the parallelly-arranged ATP/PIM-1 MMM with 5 wt.% ATP loading shows CO2 permeability of ~4018 Barrer coupled with CO2/N2 selectivity of ~19, and O2 permeability of ~672 Barrer coupled with O2/N2 selectivity of ~3. The CO2 permeability and O2 permeability increases to ~2.7 times.

Keywords

Main Subjects


  1. Liang, L., Cai, Y., Gao, P., "A facile gas-driven ink spray (GDIS) deposition strategy toward hole-conductor-free carbon-based perovskite solar cells", Emergent Mater., 5 (2022) 967-75.
  2. Ebrahimi, P., Kumar, A., Khraisheh, M., "A review of recent advances in water-gas shift catalysis for hydrogen production", Emergent Mater., 3 (2020) 881-917.
  3. Monjezi, A. H., Mesbah, M., Rezakazemi, M., Younas, M., "Prediction bubble point pressure for CO2/CH4 gas mixtures in ionic liquids using intelligent approaches", Emergent Mater., 4 (2021) 565-578.
  4. De Guido, G.,"Cryogenic CO2 capture from oxy-combustion flue gas by a hybrid distillation + physical absorption process", Eng. Res. Des., 199 (2023) 639-658.
  5. Aroon, M. A., Ismail, A. F., Matsuura, T., Montazer-Rahmati, M. M., "Performance studies of mixed matrix membranes for gas separation: A review", Purif. Technol., 75 (2010) 229-242.
  6. Matteucci, S., Yampolskii, Y., Freeman, Pinnau, I., “Materials science of membranes for gas and vapor separation”, Chichester: John Wiley & Sons, (2006).
  7. Robeson, L. M., "The upper bound revisited", Membr. Sci., 320 (2008) 390-400.
  8. Robeson, L. M., "Correlation of separation factor versus permeability for polymeric membranes", Membr. Sci., 62 (1991) 165-185.
  9. Robeson, L. M., Smith, Z. P., Freeman, B. D., Paul, D. R., "Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes", Membr. Sci., 453 (2014) 71-83.
  10. Zhao, H. Y., Feng, L. Z., Ding, X. L., Zhao, Y., Tan, X. Y., Zhang, Y. Z., "The nitrogen-doped porous carbons/PIM mixed-matrix membranes for CO2 separation", Membr. Sci., 564 (2018) 800-805.
  11. Zornoza, B., Esekhile, O., Koros, W. J., Téllez, C., Coronas J., "Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation", Purif. Technol., 77 (2011) 137-145.
  12. Wijenay, ake, S. N., Panapitiya, N. P., Versteeg, S. H., Nguyen, C. N., Goel, S., Balkus, K. J., Musselman, I. H., Ferraris, J. P., "Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation", Eng. Chem., 52 (2013) 6991-7001.
  13. Sen, M., Das, N., "In situ carbon deposition in polyetherimide/SAPO mixed matrix membrane for efficient CO2/CH4 separation", Appl. Polym. Sci., 134 (2017) 45508.
  14. Ridzuan, N. B., Musa, M. H., "Comparison between treated and untreated zeolite towards the performance of polyethersulfone mixed matrix membranes (MMMs) for O2/N2 gas separation", Mat. Res., 550-553 (2012) 728-735.
  15. Rezakazemi, M., Amooghin, A. E., Montazer-Rahmati, M. M., Ismail, A. F., Matsuura, T., "State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions", Polym. Sci., 39 (2014) 817-861.
  16. Patel, N. P., Miller, A. C., Spontak, R. J., "Highly CO2-permeable and selective polymer nanocomposite membranes", Mater., 15 (2003) 729-733.
  17. Hang, Y., Alkas, A., Zhang, Y. M., Zhang, Y. T., Telfer, S. G., "Mixed matrix membranes (MMMs) using an emerging metal-organic framework (MUF-15) for CO2 separation", Membr. Sci., 609 (2020) 118245.
  18. Goh, P. S., Ng, B. C., Ismail, A. F., Sanip, S. M., Aziz, M., Kassim, M. A., "Effect of dispersed multi-walled carbon nanotubes on mixed matrix membrane for O2/N2 separation", Sci. Technol., 46 (2011) 1250-1261.
  19. Deng, J., Dai, Z. D., Deng, L. Y., "H2-selective Troger's base-based mixed matrix membranes enhanced by 2D MOFs", Membr. Sci., 610 (2020) 118262.
  20. Chung, T. S., Lan, Y. J., Yi, L., Kulprathipanja, S., "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Polym. Sci., 32 (2007) 483-507.
  21. Anson, M., Marchese, J., Garis, E., Ochoa, N., Pagliero, C., "ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation", Membr. Sci., 243 (2004) 19-28.
  22. Narwade V,. N., Bogle, K. A., Kokol V., "Hydrothermally synthesized hydroxyapatite cellulose composites thick films as ammonia gas sensor", Emergent Mater., 5 (2022) 445-454.
  23. Babaladimath, G., Rayar, A., Chapi, S., "Sugarcane bagasse valorized superabsorbent graft copolymer for efficient deposition of crystal violet and indigo carmine dyes from aqueous solutions", Emergent Mater., 5 (2022) 1485–1493.
  24. Haden, W. L., Schwint, I. A., "Attapulgite: Its proteries and applications", Eng. Chem., 59 (1967) 58-69.
  25. Suárez, M., García-Rivas, J., Morales, J., Lorenzo, A., García-Vicente, A., García-Romero, E., "Review and new data on the surface properties of palygorskite: A comparative study", Clay Sci., 216 (2022) 106311.
  26. Xiang, L., Pan, Y. C., Zeng, G. F., Jiang, J. L., Wang, C. Q., "Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation", Membr. Sci., 500 (2016) 66-75.
  27. Xiang, L., Pan, Y. C., Jiang, J. L., Chen, Y., Chen, J., Zhang, L. X., Wang, C. Q., "Thin poly(ether-block-amide)/attapulgite composite membranes with improved CO2 permeance and selectivity for CO2/N2 and CO2/CH4", Eng. Sci., 160 (2017) 236-244.
  28. Ahmad, S., Lian, S. H., Tan, Y. X., Li, R., Zhao, J., Song, C. F., Liu, Q. L., Lu, S. J., "Solvent influence on the textural properties and CO2/N2 separation performance of novel Pebax-1657/attapulgite mixed matrix membranes", Environ. Chem. Eng., 9 (2021) 105806.
  29. Wang, F., Zhang, B., Liu, S. S., Wu, Y. H., Wang, T. H., Qiu, J. S., "Investigation of the attapulgite hybrid carbon molecular sieving membranes for permanent gas separation", Inst. Chem. Eng., 151 (2019) 146-156.
  30. Zhao, H. Y., Xie, Q., Ding, X. L., Chen, J., Hua, M. M., Tan, X. Y., Zhang, Y. Z., "High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation", Membr. Sci., 514 (2016) 305-312.
  31. Schrader, B., “Infrared and raman spectroscopy, methods and applications: Vibrational spectroscopy of different classes and states of compounds”, New York, VCH Publishers, (1995).
  32. Melo, D., Ruiz, J., Melo, M., Sobrinho, E. V., Martinelli, A. E., "Compounds, preparation and characterization of lanthanum palygorskite clays as acid catalysts", Alloys Compd., 344 (2002) 352-355.
  33. Budd, P., Msayib, K. J., Tattershall, C. E., Ghanem, B. S., Reynolds, K. J, Mckeown, N. B., Fritsch, D., "Gas separation membranes from polymers of intrinsic microporosity", Membr. Sci., 251 (2005) 263-269.
  34. Wang, Z. G., Li, M. J., Zhang, X-F., Zhou, Y. C., Yao, J. F., "Integration of natural clay into cellulose membrane for efficient CO2/N2 separation", Cellulose, 29 (2022) 1873-1881.
  35. Zhang, S. Y., Lu, X. C., Cai, M. W., Wang, Z., Han, Z. J., Chen, Z. Y., Liu, R. T., Li, K. X., Min, Y. G., "Attapulgite nanorod-incorporated polyimide membrane for enhanced gas separation performance", Polymer, 14 (2022) 5391.