Investigation of the Structural and Thermodynamic Parameters on the Nonlinear Optical Properties of InGaAs/InP Triple Quantum Well Exposed to an External Electric Field

Document Type : Research Paper

Authors

1 Nanotechnology Engineering Sivas Cumhuriyet University

2 Nanomaterials Technology unit, Basic and Applied Scientific Research Center (BASRC), College of Science of Dammam, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441 Dammam, Saudi Arabia.

3 Facultad de Ciencias, Universidad Auto´noma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, MOR, Me´xico

4 Sivas Cumhuriyet University, Physics Department, 58140 Sivas, Turkey

Abstract

   In this study, the effects of both tunable physical parameters and thermodynamic variables on the linear and nonlinear optical properties of the InGaAs/InP triple quantum well are theoretically investigated in detail. In addition, the effect of an external static electric field applied parallel to the growth direction of the structure was also studied. To carry out this analysis, firstly, the energy eigenvalues and eigenfunctions of the system were obtained as a result of solving the time-independent Schrödinger equation using the diagonalization method, under the effective mass and envelope function approach. Then, using these energy eigenvalues and eigenfunctions, the nonlinear optical properties of the structure were calculated from the expressions derived within the compact density matrix approach via the iterative method. The effect of adjustable structure parameters and applied external fields affects the difference in subband energy levels at which transitions occur and the magnitudes of the dipole moment matrix elements. These changes in the electronic properties of the structure cause the peak positions of the total (linear plus nonlinear) optical absorption coefficient and total relative refractive index change coefficient (RRIC) to shift towards lower or higher energy regions. These results are expected to enable the proper design of new optoelectronic devices.

Keywords

Main Subjects


  1. Pokutnyi, S. I., “Polarizability of germanium quantum dots with spatially separated electrons and holes in Ge/Si heterostructures”, Philosophical Magazine Letters, 99 (2019) 386-395.
  2. Bouzaïene, L., Ben Mahrsia, R., Baira, M., Sfaxi, L., Maaref, H., “Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot”, Journal of Luminescence, 135 (2013) 271-275.
  3. Chen, Y. Y., Feng, X. L., Liu, C., “Generation of Nonlinear Vortex Precursors”, Physical Review Letters, 117 (2016) 023901.
  4. Ungan, F., Bahar, M. K., Barseghyan, M. G., Pérez, L. M., Laroze, D., “Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential”, Optik, 236 (2021) 166621.
  5. Yu, Y. B., “Second-Order Nonlinear Optical Effect in an Asymmetric Quantum Well”, Applied Mechanics and Materials, 389 (2013) 1075-1079.
  6. Kaynar, E., Alaydin, B. O., “Optical properties of AlxInyGa1−x−yAs/AlzGawIn1−z−wAs quantum wells under electric and magnetic fields for telecommunication applications”, The European Physical Journal Plus, 138 (2023) 121.
  7. Feddi, E., Zouitine, A., Oukerroum, A., Dujardin, F., Assaid, E., Zazoui, M. “Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot”, Journal of Applied Physics, 117 (2015) 064309 .
  8. Kria, M., El-Yadri, M., Aghoutane, N., Pérez, L. M., Laroze, D., Feddi, E., “Forecasting and analysis of nonlinear optical responses by tuning the thickness of a doped hollow cylindrical quantum dot”, Chinese Journal of Physics, 66 (2020) 444-452.
  9. You, J. F., Zhao, Q., Zhang, Z. H., Yuan, J. H., Guo, K. X., Feddi, E., “The effect of temperature, hydrostatic pressure and magnetic field on the nonlinear optical properties of AlGaAs/GaAs semi-parabolic quantum well”, International Journal of Modern Physics B, 33 (2019) 1950325.
  10. Bouarissa, N., “Piezoelectric and electromechanical coupling constants for GaxIn1-xSb semiconducting alloys”, Philosophical Magazine Letters, 99 (2019) 138-145.
  11. Li, B., Guo, K. X., Liu, Z. L., Zheng, Y. B., “Nonlinear optical rectification in parabolic quantum dots in the presence of electric and magnetic fields”, Physics Letters A, 372 (2008) 1337-1340.
  12. Alaydin, B. O., “Effect of high bandgap AlAs quantum barrier on electronic and optical properties of In0.70Ga0.30As/Al0.60In0.40As superlattice under applied electric field for laser and detector applications”, International Journal of Modern Physics B, 35 (2021) 2150027.
  13. Altun, D., Ozturk, O., Alaydin, B.O., Ozturk, E., “Linear and nonlinear optical properties of a superlattice with periodically increased well width under electric and magnetic fields”, Micro and Nanostructures, 166 (2022) 207225.
  14. El Khamkhami, J., Feddi, E., Assaid, E., Dujardin, F., Stébé, B., Diouri, J., “Binding energy of excitons in inhomogeneous quantum dots under uniform electric field”, Physica E: Low-dimensional Systems and Nanostructures, 15 (2002) 99-106.
  15. Feddi, E., Assaid, E., Dujardin, F., Stébé, B., Diouri, J., “Magnetic Field Influence on the Polarisability of Donors in Quantum Crystallites”, Physica Scripta, 62 (2000) 88.
  16. Ben Mahrsia, R., Choubani, M., Bouzaiene, L., Maaref, H., “Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature”, Journal of Alloys and Compounds, 671 (2016) 200-207.
  17. Makhlouf, D., Choubani, M., Saidi, F., Maaref, H., “Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier's transition lifetime in InAs/GaAs core/shell quantum dot”, Materials Chemistry and Physics, 267 (2021) 124660.
  18. Dahiya, S., Lahon, S., Sharma, R., “Effects of temperature and hydrostatic pressure on the optical rectification associated with the excitonic system in a semi-parabolic quantum dot”, Physica E: Low-dimensional Systems and Nanostructures, 118 (2020) 113918.
  19. Odhiambo Oyoko, H., Porras-Montenegro, N., López, S. Y., Duque, C.A., “Comparative study of the hydrostatic pressure and temperature effects on the impurity-related optical properties in single and double GaAs–Ga1–x Alx As quantum wells”, Physica Status Solidi C, 4 (2007) 298-300.
  20. Yuh, P. F., Wang, K. L., “Optical transitions in a step quantum well”, Journal of Applied Physics, 65 (1989) 4377-4381.
  21. Albe, V., Lewis, L. J., “Optical properties of InAs/InP ultrathin quantum wells”, Physica B: Condensed Matter, 301 (2001) 233-238.
  22. West, L.C., Eglash, S.J., “First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well”, Applied Physics Letters, 46 (1985) 1156-1158.
  23. Sirtori, C., Capasso, F., Sivco, D. L., Cho, A. Y., “Giant, triply resonant, third-order nonlinear susceptibility X(3)3w in coupled quantum wells”, Physical Review Letters, 68 (1992) 1010-1013.
  24. Sirtori, C., Capasso, F., Faist, J., Scandolo, S., “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells”, Physical Review B, 50 (1994) 8663-8674.
  25. Kirak, M., Altinok, Y., Yilmaz, S., “The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field”, Journal of Luminescence, 136 (2013) 415-421.
  26. Ozturk, E., Sokmen, I., “Nonlinear intersubband absorption and refractive index changes in square and graded quantum well modulated by temperature and Hydrostatic pressure”, Journal of Luminescence, 134 (2013) 42-48.
  27. Karabulut, I., Mora-Ramos, M. E., Duque, C. A., “Nonlinear optical rectification and optical absorption in GaAs–Ga1–xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure”, Journal of Luminescence, 131 (2011) 1502-1509.
  28. Mora-Ramos, M. E., Duque, C.A., Kasapoglu, E., Sari, H., Sökmen, I., “Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields”, Journal of Luminescence, 132 (2012) 901-913.
  29. Ganguly, J., Saha, S., Pal, S., Ghosh, M., “Noise-driven optical absorption coefficients of impurity doped quantum dots”, Physica E: Low-dimensional Systems and Nanostructures, 75 (2016) 246-256.
  30. Zhang, L., Xie, H. J., “Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells”, Physical Review B, 68 (2003) 235315.
  31. Keshavarz, A., Karimi, M. J., “Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells”, Physics Letters A, 374 (2010) 2675-2680.
  32. Yakar, Y., Çakır, B., Özmen, A., “Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential”, Optics Communications, 283 (2010) 1795-1800.
  33. Saha, S., Pal, S., Ganguly, J., Ghosh, M., “Exploring optical refractive index change of impurity doped quantum dots driven by white noise”, Superlattices and Microstructures, 88 (2015) 620-633.
  34. Mandal, A., Sarkar, S., Ghosh, A.P., Ghosh, M., “Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential”, Chemical Physics, 463 (2015) 149-158.
  35. Sakiroglu, S., Yesilgul, U., Ungan, F., Duque, C. A., Kasapoglu, E., Sari, H., Sokmen, I., “Electronic band structure of GaAs/AlxGa1−xAs superlattice in an intense laser field”, Journal of Luminescence, 132 (2012) 1584-1588.
  36. Ungan, F., Yesilgul, U., Şakiroğlu, S., Kasapoglu, E., Sari, H., Sökmen, I., “Effects of an intense, high-frequency laser field on the intersubband transitions and impurity binding energy in semiconductor quantum wells”, Physics Letters A, 374 (2010) 2980-2984.
  37. Eseanu, N., “Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells”, Physics Letters A, 374 (2010) 1278-1285.
  38. Paul, S., Roy, J. B., Basu, P. K., “Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs”, Journal of Applied Physics, 69 (1991) 827-829.
  39. Ioffe, (March/27/2023) “InP, InP Band Structure and Carrier Concentration”, https://www.ioffe.ru/SVA/NSM/Semicond/InP/bandstr.html.
  40. Ioffe, (April/14/2023) “InGaAs, InGaAs Band Structure and Carrier Concentration”, http://www.ioffe.ru/SVA/NSM/Semicond/GaInAs/index.html.
  41. Soucail, B., Voisin, P., Voos, M., Rondi, D., Nagle, J., Cremoux, B. D., “Optical investigations of the band offsets in an InGaAs-InGaAsP-InP double-step heterostructure”, Semiconductor Science and Technology, 5 (1990) 918.
  42. Başer, P., Elagoz, S., “The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in lattice matched InP/In0.53Ga0.47As/InP square quantum well”, Superlattices and Microstructures, 102 (2017) 173-179.
  43. Adachi, S., “Properties of Group eIV, III-V and II-VI Semiconductors”, Willey Press, (2005).
  44. Mora-Ramos, M. E., Duque, C. A., Kasapoglu, E., Sari, H., Sökmen, I., “Electron-related nonlinearities in GaAs–Ga1−xAlxAs double quantum wells under the effects of intense laser field and applied electric field”, Journal of Luminescence, 135 (2013) 301-311.
  45. Khordad, R., “Effect of position-dependent effective mass on linear and nonlinear optical properties of a cubic quantum dot”, Physica B: Condensed Matter, 406 (2011) 3911-3916.
  46. Ungan, F., Kasapoglu, E., Duque, C. A., Sari, H., Sokmen, I., “The effect of the intense laser field on the intersubband transitions in Ga1−xInxNyAs1−y/GaAs single quantum well”, Physica E: Low-dimensional Systems and Nanostructures, 44 (2011) 515-520.
  47. Ungan, F., Yesilgul, U., Kasapoglu, E., Sari, H., Sökmen, I., “Effects of applied electromagnetic fields on the linear and nonlinear optical properties in an inverse parabolic quantum well”, Journal of Luminescence, 132 (2012) 1627-1631.
  48. Ungan, F., Mora-Ramos, M. E., Duque, C. A., Kasapoglu, E., Sari, H., Sökmen, I., “Linear and nonlinear optical properties in a double inverse parabolic quantum well under applied electric and magnetic fields”, Superlattices and Microstructures, 66 (2014) 129-135.