Exploring the Nonlinear Optical Behaviour of InGaAs/GaAs Triple Quantum Wells via Structural Modulations and External Electric Fields

Document Type : Research Paper

Authors

1 Department of Nanotechnology Engineering, Sivas Cumhuriyet University, P. O. Box 58140 Sivas, Turkey

2 Nanomaterials Technology unit, Basic and Applied Scientific Research Center (BASRC), College of Science of Dammam, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441 Dammam, Saudi Arabia

3 Department of Physics, College of Sciences for Girls, Imam Abdulrahman Bin Faisal University, Saudi Arabia

4 Centro de Investigación en Ciencias-IICBA, Universidad Autonoma del Estado de Morelos, Ave. Universidad P. O. Box 51001, CP 62209, Cuernavaca, Morelos, Mexico

5 Department of Physics, Sivas Cumhuriyet University, P. O. Box 58140 Sivas, Turkey

10.22034/ijnn.2023.2000747.2365

Abstract

   The nonlinear optical properties of the InxGa1-xAs/GaAs triple quantum well structure are studied for different structure parameters and applied external electric field. Within the framework of the effective mass and envelope function approximations, the one-dimensional time-independent Schrödinger wave equation is solved using the diagonalization method to obtain the energy eigenvalues and eigenfunctions of the structure. The coefficients of nonlinear optical properties such as nonlinear optical rectification (NOR), second harmonic generation (SHG), and third harmonic generation (THG) of the structure are numerically evaluated from the corresponding expressions derived within the compact density matrix approximation. The influence of adjustable structure parameters and the applied external electric field affects the separation of subband energy levels and the magnitudes of dipole moment matrix elements. These changes in the electronic properties of the structure cause the NOR, SHG, and THG peak positions to shift towards lower or higher energy regions. It is expected that these results will enable the appropriate design of new optoelectronic devices.

Keywords

Main Subjects


  1. Khordad, R., “Effects of magnetic field and geometrical size on the interband light absorption in a quantum pseudodot system”, Solid State Sciences, 12 (2010) 1253-1256.
  2. Şahin, M., “Third-order nonlinear optical properties of a one- and two-electron spherical quantum dot with and without a hydrogenic impurity”, Journal of Applied Physics, 106 (2009) 063710.
  3. Lu, L., Xie, W., Hassanabadi, H., “The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods–Saxon potential”, Journal of Luminescence, 131 (2011) 2538-2543.
  4. Dakhlaoui, H., Nefzi, M., “Tuning the linear and nonlinear optical properties in double and triple δ− doped GaAs semiconductor: Impact of electric and magnetic fields”, Superlattices and Microstructures, 136 (2019) 106292.
  5. Karabulut, I., Paspalakis, E., “The role of permanent dipoles on the intensity-dependent nonlinear optical properties in asymmetric coupled quantum wells under a static electric field”, Physica E: Low-dimensional Systems and Nanostructures, 81 (2016) 294-301.
  6. Kria, M., El-Yadri, M., Aghoutane, N., Pérez, L. M., Laroze, D., Feddi, E., “Forecasting and analysis of nonlinear optical responses by tuning the thickness of a doped hollow cylindrical quantum dot”, Chinese Journal of Physics, 66 (2020) 444-452.
  7. Wang, G. H., Guo, Q., Guo, K. X., “Third-order nonlinear optical properties of parabolic and semiparabolic quantum wells”, Physica Status Solidi B, 238 (2003) 75-80.
  8. Feddi, E., Assaid, E., Dujardin, F., Stébé, B., Diouri, J., “Magnetic Field Influence on the Polarisability of Donors in Quantum Crystallites”, Physica Scripta, 62 (2000) 88.
  9. Rajaei, E., Borji, M. A., “Energy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes”, International Journal of Nanoscience and Nanotechnology, 12 (2016) 45-53.
  10. Wang, G. H., Guo, Q., Guo, K. X., “Refractive Index Changes Induced by the Incident Optical Intensity in Semiparabolic Quantum Wells”, Chinese Journal of Physics, 41 (2003) 296-306.
  11. Liang, S., Xie, W., Shen, H., “Optical properties in a two-dimensional quantum ring: Confinement potential and Aharonov–Bohm effect”, Optics Communications, 284 (2011) 5818-5828.
  12. Shao, S., Guo, K. X., Zhang, Z. H., Li, N., Peng, C., “Studies on the third-harmonic generations in cylindrical quantum dots with an applied electric field”, Superlattices and Microstructures, 48 (2010) 541-549.
  13. Kasapoglu, E., Duque, C. A., Sari, H., Sökmen, I., “Intense laser field effects on the linear and nonlinear intersubband optical properties of a semi-parabolic quantum well”, The European Physical Journal B, 82 (2011) 13-17.
  14. Pal, S., Ghosh, M., “Tailoring nonlinear optical rectification coefficient of impurity doped quantum dots by invoking Gaussian white noise”, Optical and Quantum Electronics, 48 (2016) 372.
  15. Arif, S. M., Bera, A., Ghosh, A., Ghosh, M., “Analyzing role of relaxation time on second harmonic generation and optical dielectric function of impurity doped quantum dots under the aegis of noise”, Physica B: Condensed Matter, 588 (2020) 412166.
  16. Ganguly, J., Ghosh, M., “Modulating optical second harmonic generation of impurity-doped quantum dots in presence of Gaussian white noise”, Physica Status Solidi B, 253 (2016) 1093-1103.
  17. Dujardin, F., Oukerroum, A., Feddi, E., Bailach, J. B., Pastor, J. M., Zazi, M., “Effect of a lateral electric field on an off-center single dopant confined in a thin quantum disk”, Journal of Applied Physics, 111 (2012).
  18. Khamkhami, J. E., Feddi, E., Assaid, E., Dujardin, F., Stébé, B., Diouri, J., “Binding energy of excitons in inhomogeneous quantum dots under uniform electric field”, Physica E: Low-dimensional Systems and Nanostructures, 15 (2002) 99-106.
  19. Yu, Y. B., Wang, H. J., “Third-harmonic generation in two-dimensional pseudo-dot system with an applied magnetic field”, Superlattices and Microstructures, 50 (2011) 252-260.
  20. Gravé, I., Segev, M., Yariv, A., “Observation of phase conjugation at 10.6 μm via intersubband third‐order nonlinearities in a GaAs/AlGaAs multi‐quantum‐well structure”, Applied Physics Letters, 60 (1992) 2717-2719.
  21. Saha, S., Ghosh, M., “Tuning third harmonic generation of impurity doped quantum dots in the presence of Gaussian white noise”, Journal of Physics and Chemistry of Solids, 90 (2016) 69-79.
  22. Ganguly, J., Saha, S., Bera, A., Ghosh, M., “Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise”, Superlattices and Microstructures, 98 (2016) 385-399.
  23. Duque, C. A., Mora-Ramos, M. E., Barseghyan, M. G., “Electronic states in a Pöschl–Teller-like quantum well: Combined effects of electric field, hydrostatic pressure, and temperature”, Superlattices and Microstructures, 50 (2011) 480-490.
  24. Hakimyfard, A., Barseghyan, M. G., Kirakosyan, A. A., “Simultaneous effects of pressure and magnetic field on intersubband optical transitions in Pöschl–Teller quantum well”, Physica E: Low-dimensional Systems and Nanostructures, 41 (2009) 1596-1599.
  25. Barseghyan, M. G., Hakimyfard, A., Zuhair, M., Duque, C. A., Kirakosyan, A.A., “Binding energy of hydrogen-like donor impurity and photoionization cross-section in InAs Pöschl–Teller quantum ring under applied magnetic field”, Physica E: Low-dimensional Systems and Nanostructures, 44 (2011) 419-424.
  26. Radovanović, J., Milanović, V., Ikonić, Z., Indjin, D., “Intersubband absorption in Pöschl–Teller-like semiconductor quantum wells”, Physics Letters A, 269 (2000) 179-185.
  27. Yuh, P. F., Wang, K. L., “Optical transitions in a step quantum well”, Journal of Applied Physics, 65 (1989) 4377-4381.
  28. Hao, F., Pang, J. P., Sugiyama, M., Tada, K., Nakano, Y., “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential”, IEEE Journal of Quantum Electronics, 34 (1998) 1197-1208.
  29. Yıldırım, H., Tomak, M., “Nonlinear optical properties of a Pöschl-Teller quantum well”, Physical Review B, 72 (2005) 115340.
  30. Restrepo, R. L., Ungan, F., Kasapoglu, E., Mora-Ramos, M. E., Morales, A. L., Duque, C. A., “The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well”, Physica B: Condensed Matter, 457 (2015) 165-171.
  31. Martínez-Orozco, J. C., Rodríguez-Magdaleno, K. A., Suárez-López, J. R., Duque, C. A., Restrepo, R. L., “Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects”, Superlattices and Microstructures, 92 (2016) 166-173.
  32. Kasapoglu, E., Sakiroglu, S., Sökmen, I., Restrepo, R. L., Mora-Ramos, M. E., Duque, C. A., “The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p±) and optical absorption between the related states in an asymmetric parabolic quantum well”, Optical Materials, 60 (2016) 318-323.
  33. Altun, D., Ozturk, O., Alaydin, B. O., Ozturk, E., “Linear and nonlinear optical properties of a superlattice with periodically increased well width under electric and magnetic fields”, Micro and Nanostructures, 166 (2022) 207225.
  34. Aydinoglu, H. S., Sayrac, M., Mora-Ramos, M. E., Ungan, F., “Nonlinear optical properties in AlxGa1-xAs/GaAs double-graded quantum wells: The effect of the structure parameter, static electric, and magnetic field”, Solid State Communications, 342 (2022) 114647.
  35. Sayrac, M., Turkoglu, A., Ungan, F. “Influence of hydrostatic pressure, temperature, and terahertz laser field on the electron-related optical responses in an asymmetric double quantum well”, The European Physical Journal B, 94 (2021) 121.
  36. Feddi, E., Zouitine, A., Oukerroum, A., Dujardin, F., Assaid, E., Zazoui, M., “Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot”, Journal of Applied Physics, 117 (2015) 064309.
  37. Gurnick, M., DeTemple, T., “Synthetic nonlinear semiconductors”, IEEE Journal of Quantum Electronics, 19 (1983) 791-794.
  38. Rosencher, E., Bois, P., “Model system for optical nonlinearities: Asymmetric quantum wells”, Physical Review B, 44 (1991) 11315-11327.
  39. Karabulut, I., Safak, H., Tomak, M., “Nonlinear optical rectification in asymmetrical semiparabolic quantum wells”, Solid State Communications, 135 (2005) 735-738.
  40. Baskoutas, S., Paspalakis, E., Terzis, A. F., “Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field”, Journal of Physics: Condensed Matter, 19 (2007) 395024.
  41. Alaydin, B. O., “Effect of high bandgap AlAs quantum barrier on electronic and optical properties of In0.70Ga0.30As/Al0.60In0.40As superlattice under applied electric field for laser and detector applications”, International Journal of Modern Physics B, 35 (2021) 2150027.
  42. Sayrac, M., Turkoglu, A., Mora-Ramos, M. E., Ungan, F., “Intensity-dependent nonlinear optical properties in an asymmetric Gaussian potential quantum well-modulated by external fields”, Optical and Quantum Electronics, 53 (2021) 485.
  43. Kaynar, E., Alaydin, B. O., “Optical properties of AlxInyGa1−x−yAs/AlzGawIn1−z−wAs quantum wells under electric and magnetic fields for telecommunication applications”, The European Physical Journal Plus, 138 (2023) 121.
  44. Dakhlaoui, H., Vinasco, J. A., Duque, C. A., “External fields controlling the nonlinear optical properties of quantum cascade laser based on staircase-like quantum wells”, Superlattices and Microstructures, 155 (2021) 106885.
  45. Turkoglu, A., Dakhlaoui, H., Mora-Ramos, M. E., Ungan, F., “Optical properties of a quantum well with Razavy confinement potential: Role of applied external fields”, Physica E: Low-dimensional Systems and Nanostructures, 134 (2021) 114919.
  46. Sakiroglu, S., Yesilgul, U., Ungan, F., Duque, C. A., Kasapoglu, E., Sari, H., Sokmen, I., “Electronic band structure of GaAs/AlxGa1−xAs superlattice in an intense laser field”, Journal of Luminescence, 132 (2012) 1584-1588.
  47. Ungan, F., Yesilgul, U., Şakiroğlu, S., Kasapoglu, E., Sari, H., Sökmen, I., “Effects of an intense, high-frequency laser field on the intersubband transitions and impurity binding energy in semiconductor quantum wells”, Physics Letters A, 374 (2010) 2980-2984.
  48. Eseanu, N., “Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells”, Physics Letters A, 374 (2010) 1278-1285.
  49. Mora-Ramos, M. E., Duque, C. A., Kasapoglu, E., Sari, H., Sökmen, I., “Electron-related nonlinearities in GaAs–Ga1−xAlxAs double quantum wells under the effects of intense laser field and applied electric field”, Journal of Luminescence, 135 (2013) 301-311.
  50. Ünlü, S., Karabulut, İ., Şafak, H., “Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential”, Physica E: Low-dimensional Systems and Nanostructures, 33 (2006) 319-324.
  51. Doyeol, A., Shun-lien, C., “Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field”, IEEE Journal of Quantum Electronics, 23 (1987) 2196-2204.
  52. Martínez-Orozco, J. C., Mora-Ramos, M. E., Duque, C. A., “Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure”, Journal of Luminescence, 132 (2012) 449-456.
  53. Mora-Ramos, M. E., Duque, C. A., Kasapoglu, E., Sari, H., Sökmen, I., “Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields”, Journal of Luminescence, 132 (2012) 901-913.
  54. Sayrac, M., Kaynar, E., Ungan, F., “The effect of structure parameters and static electric field on the nonlinear optical properties of triple InGaAs/GaAs quantum well”, Journal of Molecular Structure, (2022) 134252.
  55. Sayrac, M., “Effects of applied external fields on the nonlinear optical rectification, second, and third-harmonic generation in an asymmetrical semi exponential quantum well”, Optical and Quantum Electronics, 54 (2021) 52.
  56. Ozturk, O., Ozturk, E., Elagoz, S., “Linear and nonlinear optical absorption coefficient and electronic features of triple GaAlAs/GaAs and GaInAs/GaAs quantum wells depending on barrier widths”, Optik, 180 (2019) 394-405.