Development of FDA-Approved Antibacterial Metal and Metal Oxide Nanoparticles: An Update

Document Type : Research Paper

Authors

1 Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia

2 Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia

3 Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Quhai, Wenzhou 325060, Zhejiang Province, China

4 School of Health Sciences, International Medical University, Bukit Jalil, 57100 Kuala Lumpur, Kuala Lumpur, Malaysia

5 School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany

6 Department of Biological Sciences, College of Science, Mathematics and Technology, Kean University, 1000 Morris Avenue, Union, New Jersey 07083, United States

10.22034/ijnn.2023.1978122.2311

Abstract

   Nanotechnology is an emerging discipline for biomedical application. Nanoparticles (NPs) research is one of the most studied and rapidly evolving field with its wide range of diagnostic and therapeutic applications, particularly in antimicrobial development. Following the improvement of the biomaterial’s functionality, the new area of ‘nanocomposites’ which often refers to the combination of NPs with other biomaterials such as hydrogel, polymers or other stabilizers, has swiftly followed. In the past decades, bacterial infections have caused negative impacts on human health, social and economic development in the globe. These problems are further aggravated by antibiotic resistance issues caused by drug-resistant microbes. With this, the development of antibacterial NPs has become an important field to alternate for the discovery of novel antibacterial agent. This review aims to discuss the key features of NPs, primarily derived from metal and metal oxide, for their antibacterial use in the clinic, the mechanisms of bacterial killing, and to cover some of the key challenges towards the Food and Drug Administration (FDA) approval for clinical use.

Keywords

Main Subjects


  1. Ataide, J. A., Zanchetta, B., Santos, E. M., Fava, A. L. M., Alves, T. F. R., Cefali, L. C., Chaud, M. V., Oliveira-Nascimento, L., Souto, E. B., Mazzola, P. G., “Nanotechnology-based dressings for wound management”, Pharmaceuticals (Basel, Switzerland), 15 (2022) 1286.
  2. Zhao, Q., Cheng, N., Sun, X., Yan, L. , Li, W., “The application of nanomedicine in clinical settings”, Frontiers in Bioengineering and Biotechnology, 11 (2023) 1219054.
  3. Jia, Y., Jiang, Y., He, Y., Zhang, W., Zou, J., Magar, K. T., Boucetta, H., Teng, C., He, W., “Approved nanomedicine against diseases”, Pharmaceutics, 15 (2023) 774.
  4. WHO INT (2020) The top 10 causes of death [online]. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. (Accessed 14 September 2023).
  5. Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., Alqumber, M. A. A., “Antimicrobial resistance: A growing serious threat for global public health”, Healthcare (Basel, Switzerland), 11 (2023) 1946.
  6. Gharpure, S., Akash, A., Ankamwar, B., “A review on antimicrobial properties of metal nanoparticles”, Journal of Nanoscience and Nanotechnology, 20 (2020) 3303-3339.
  7. Aljeldah M. M., “Antimicrobial resistance and its spread is a global threat”, Antibiotics (Basel, Switzerland), 11 (2022) 1082.
  8. Hetta, H. F., Ramadan, Y. N., Al-Harbi, A. I., A Ahmed, E., Battah, B., Abd Ellah, N. H., Zanetti, S., Donadu, M. G., “Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives”, Biomedicines, 11 (2023) 413.
  9. Geng, Z., Cao, Z., Liu, J., “Recent advances in targeted antibacterial therapy basing on nanomaterials”, Exploration, 3 (2023).
  10. WHO INT (2021) Antimicrobial resistance [online]. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. (Accessed 16 September 2023).
  11. Chakraborty, N., Jha, D., Roy, I., Kumar, P., Gaurav, S. S., Marimuthu, K., Ng, O.-T., Lakshminarayanan, R., Verma, N. K., Gautam, H. K., “Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies”, Journal of Nanobiotechnology, 20 (2022) 375.
  12. Mba, I. E., Nweze, E. I., “Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects”, World Journal of Microbiology and Biotechnology, 37 (2021) 1-30.
  13. Beegum, S.A., David, S.B., “Investigation of antimicrobial activity of ‎plant-mediated green synthesis of silver ‎nanoparticles”, International Journal of Nanoscience and Nanotechnology, 18 (2022) 265-274.
  14. Rakhimova, B., Kudaibergenov, K., Sassykova, L., Spanova, G., Aknazarov, S., Tulepov, M., “Preparation of composites of antibacterial ‎materials based on bacterial cellulose ‎and silver nanoparticles for wound ‎healing”, International Journal of Nanoscience and Nanotechnology, 18 (2022) 123-133.
  15. Arya, G., Sharma, N., Mankamna, R., Nimesh, S., “Antimicrobial silver nanoparticles: future of nanomaterials”, in Prasad, R., Microbial nanobionics, Springer, Cham, 2019, 89-119.
  16. Liao, S., Zhang, Y., Pan, X., Zhu, F., Jiang, C., Liu, Q., Cheng, Z., Dai, G., Wu, G., Wang, L., Chen, L., “Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa”, International Journal of Nanomedicine, 14 (2019) 1469.
  17. Ebrahim-Saraie, H. S., Heidari, H., Rezaei, V., Mortazavi, S. M. J., Motamedifar, M., “Promising antibacterial effect of copper oxide nanoparticles against several multidrug resistant uropathogens”, Journal of Pharmaceutical Sciences, 24 (2019) 213-218.
  18. Gu, X., Xu, Z., Gu, L., Xu, H., Han, F., Chen, B., Pan, X., “Preparation and antibacterial properties of gold nanoparticles: A review”, Environmental Chemistry Letters, 19 (2021) 167-187.
  19. Das, C. A., Kumar, V. G., Dhas, T. S., Karthick, V., Govindaraju, K., Joselin, J. M., Baalamurugan, J., “Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances”, Biocatalysis and Agricultural Biotechnology, 27 (2020) 101593.
  20. Ismail, N. A., Shameli, K., Wong, M. M. T., Teow, S. Y., Chew, J., Sukri, S. N. A. M., “Antibacterial and cytotoxic effect of honey mediated copper nanoparticles synthesized using ultrasonic assistance”, Materials Science and Engineering: C, 104 (2019) 109899.
  21. Esmaeillou, M., Zarrini, G., Rezaee, M. A., Bahadori, A., “Vancomycin capped with silver nanoparticles as an antibacterial agent against multi-drug resistance bacteria”, Advanced Pharmaceutical Bulletin, 7 (2017) 479.
  22. Alavi, M., Rai, M., “Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria”, Expert Review of Anti-infective Therapy, 17 (2019) 419-428.
  23. Punjabi, K., Mehta, S., Chavan, R., Chitalia, V., Deogharkar, D., Deshpande, S., “Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens”, Frontiers in Microbiology, 9 (2018) 2207.
  24. Li, P., Li, J., Wu, C., Wu, Q., Li, J., “Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles”, Nanotechnology, 16 (2005) 1912.
  25. Murugan, S., Paulpandian, P., “Synergistic antibacterial evaluation of commercial antibiotics combined with nanoiron against human pathogens”, International Journal of Pharmaceutical Sciences Review and Research, 8 (2013) 183-190.
  26. Kiranmai, M., Kadimcharla, K., Keesara, N. R., Fatima, S. N., Bommena, P., Batchu, U. R., “Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics”, Indian Journal of Pharmaceutical Sciences, 79 (2017) 695-700.
  27. Fakhri, A., Tahami, S., Naji, M., “Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens”, Journal of Photochemistry and Photobiology B: Biology, 169 (2017) 21-26.
  28. Nazeruddin, G. M., Prasad, R. N., Shaikh, Y. I., Shaikh, A. A., “Synergetic effect of Ag-Cu bimetallic nanoparticles on antimicrobial activity”, Der Pharmacia Lettre, 3 (2014) 129-36.
  29. Parimaladevi, R., Parvathi, V. P., Lakshmi, S. S., Umadevi, M., “Synergistic effects of copper and nickel bimetallic nanoparticles for enhanced bacterial inhibition”, Materials Letters, 211 (2018) 82-86.
  30. Teow, S. Y., Wong, M. M. T., Yap, H. Y., Peh, S. C., Shameli, K., “Bactericidal properties of plants-derived metal and metal oxide nanoparticles (NPs)”, Molecules, 23 (2018) 1366.
  31. Sukri, S. N. A. M., Shameli, K., Wong, M. M. T., Teow, S. Y., Chew, J., Ismail, N. A., “Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract”, Journal of Molecular Structure, Vol. 1189 (2019) 57-65.
  32. Kanagasubbulakshmi, S., Kadirvelu, K., “Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity”, Defence Life Science Journal, 2 (2017) 422-427.
  33. Seabra, A. B., Pelegrino, M. T., Haddad, P. S., “Antimicrobial applications of superparamagnetic iron oxide nanoparticles: Perspectives and challenges”, Nanostructures for Antimicrobial Therapy, 1 (2017) 531-550.
  34. Javanbakht, T., Laurent, S., Stanicki, D., Wilkinson, K. J., “Relating the surface properties of superparamagnetic iron oxide nanoparticles (SPIONs) to their bactericidal effect towards a biofilm of Streptococcus mutans”, PLoS One, 11 (2016) e0154445.
  35. Ravikumar, S., Gokulakrishnan, R., Boomi, P., “In vitro antibacterial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens”, Asian Pacific Journal of Tropical Disease, 2 (2012) 85-89.
  36. Bhande, R. M., Khobragade, C. N., Mane, R. S., Bhande, S., “Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections”, Journal of Nanoparticle Research, 15 (2013) 1-13.
  37. Saleh, N. B., Chambers, B., Aich, N., Plazas-Tuttle, J., Phung-Ngoc, H. N., Kirisits, M. J., “Mechanistic lessons learned from studies of planktonic bacteria with metallic nanomaterials: implications for interactions between nanomaterials and biofilm bacteria”, Frontiers in Microbiology, 6 (2015) 677.
  38. Cheng, T. M., Chu, H. Y., Huang, H. M., Li, Z. L., Chen, C. Y., Shih, Y. J., Whang-Peng, J., Cheng, R. H., Mo, J. K., Lin, H. Y., Wang, K., “Toxicologic concerns with current medical nanoparticles”, International Journal of Molecular Sciences, 23 (2022) 7597.
  39. Ghazzy, A., Naik, R. R., Shakya, A. K., “Metal-polymer nanocomposites: A promising approach to antibacterial materials”, Polymers, 15 (2023) 2167.
  40. Garg, P. Attri, P., Sharma, R., Chauhan, M., Chaudhary, G. R., “Advances and perspective on antimicrobial nanomaterials for biomedical applications”, Frontiers in Nanotechnology, 4 (2022) 898411.
  41. Liu, Y., Tan, J., Thomas, A., Ou-Yang, D., Muzykantov, V. R., “The shape of things to come: importance of design in nanotechnology for drug delivery”, Therapeutic Delivery, 3 (2012) 181-194.
  42. Pal, S., Tak, Y. K., Song, J. M., “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli”, Applied and Environmental Microbiology, 73 (2007) 1712-1720.
  43. Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., Memic, A., “Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains”, International Journal of Nanomedicine, 7 (2012) 3527.
  44. Dong, Y., Zhu, H., Shen, Y., Zhang, W., Zhang, L., “Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens”, PloS One, 14 (2019) e0222322.
  45. Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., Park, W. H., “Shape-dependent antimicrobial activities of silver nanoparticles”, International Journal of Nanomedicine, 14 (2019) 2773.
  46. Wang, L., He, H., Yu, Y., Sun, L., Liu, S., Zhang, C., He, L., “Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli”, Journal of Inorganic Biochemistry, 135 (2014) 45-53.
  47. Albanese, A., Tang, P. S., Chan, W. C., “The effect of nanoparticle size, shape, and surface chemistry on biological systems”, Annual Review of Biomedical Engineering, 14 (2012) 1-16.
  48. Ahumada, M., Lazurko, C., Alarcon, E. I., “Fundamental concepts on surface chemistry of nanomaterials”, in Prieto, J.P. and Béjar M.G, Photoactive Inorganic Nanoparticles,Elsevier, 2019, 1-19.
  49. Kvítek, L., Panáček, A., Soukupova, J., Kolář, M., Večeřová, R., Prucek, R., Holecova, M., Zboril, R., “Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs)”, The Journal of Physical Chemistry C, 112 (2008) 5825-5834.
  50. Lipovsky, A., Gedanken, A., Lubart, R., “Visible light-induced antibacterial activity of metal oxide nanoparticles”, Photomedicine and Laser Surgery, 31 (2013) 526-530.
  51. Pourali, P., Baserisalehi, M., Afsharnezhad, S., Behravan, J., Ganjali, R., Bahador, N., Arabzadeh, S., “The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles”, Biometals, 26 (2013) 189-196.
  52. Alpaslan, E., Geilich, B. M., Yazici, H., Webster, T. J., “pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth”, Scientific Reports, 7 (2017) 1-12.
  53. Choi, O., Hu, Z., “Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria”, Environmental Science & Technology, 42 (2008) 4583-4588.
  54. Zhao, J., Wang, Z., Dai, Y., Xing, B., “Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter”, Water Research, 47 (2013) 4169-4178.
  55. D'Autréaux, B., Toledano, M. B., “ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis”, Nature Reviews Molecular Cell Biology, 8 (2007) 813-824.
  56. Dutta, R. K., Nenavathu, B. P., Gangishetty, M. K., Reddy, A. V. R., “Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation”, Colloids and Surfaces B: Biointerfaces, 94 (2012) 143-150.
  57. Laha, D., Pramanik, A., Laskar, A., Jana, M., Pramanik, P., Karmakar, P., “Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage”, Materials Research Bulletin, 59 (2014) 185-191.
  58. Wang, L., Hu, C., Shao, L., The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12 (2017) 1227.
  59. Marambio-Jones, C., Hoek, E., “A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment”, Journal of Nanoparticle Research, 12 (2010) 1531-1551.
  60. Ivask, A., Juganson, K., Bondarenko, O., Mortimer, M., Aruoja, V., Kasemets, K, Blinova, I., Heinlaan, M., Slaveykova, V., Kahru, A., “Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review”, Nanotoxicology, 8 (2014) 57-71.
  61. Ma, H., Williams, P. L., Diamond, S. A., “Ecotoxicity of manufactured ZnO nanoparticles–a review”, Environmental Pollution, 172 (2013) 76-85.
  62. Chang, Y. N., Zhang, M., Xia, L., Zhang, J., Xing, G., “The toxic effects and mechanisms of CuO and ZnO nanoparticles”, Materials, 5 (2012) 2850-2871.
  63. Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., Choi, I., “Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance”, International Journal of Molecular Sciences, 20 (2019) 2468.
  64. Chambers, B. A., Afrooz, A. N., Bae, S., Aich, N., Katz, L., Saleh, N. B., Kirisits, M. J., “Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles”, Environmental Science & Technology, 48 (2014) 761-769.
  65. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., Kim, J. O., “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus”, Journal of Biomedical Materials Research, 52 (2000) 662-668.
  66. Okyay, T. O., Bala, R. K., Nguyen, H. N., Atalay, R., Bayam, Y., Rodrigues, D. F., “Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods”, RSC Advances, 5 (2015) 2568-2575.
  67. Ghebretatios, M., Schaly, S., Prakash, S., “Nanoparticles in the food industry and their impact on human gut microbiome and diseases”, International Journal of Molecular Sciences, 22 (2021) 1942.
  68. Egbuna, C., Parmar, V. K., Jeevanandam, J., Ezzat, S. M., Patrick-Iwuanyanwu, K. C., Adetunji, C. O., Khan, J., Onyeike, E. N., Uche, C. Z., Akram, M., Ibrahim, M. S., El Mahdy, N. M., Awuchi, C. G., Saravanan, K., Tijjani, H., Odoh, U. E., Messaoudi, M., Ifemeje, J. C., Olisah, M. C., Ezeofor, N. J., Chikwendu, C. J., Ibeabuchi, C. G., “Toxicity of nanoparticles in biomedical application: nanotoxicology”, Journal of Toxicology, 2021 (2021) 9954443.
  69. Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., Li, P., “Reactive oxygen species-related nanoparticle toxicity in the biomedical field”, Nanoscale Research Letters, 15 (2020) 1-14.
  70. Ai, J., Biazar, E., Jafarpour, M., Montazeri, M., Majdi, A., Aminifard, S., Zafari, M., Akbari, H. R., Rad, H. G., “Nanotoxicology and nanoparticle safety in biomedical designs”, International Journal of Nanomedicine, 6 (2011) 1117.
  71. Kovvuru, P., Mancilla, P. E., Shirode, A. B., Murray, T. M., Begley, T. J., Reliene, R., “Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues”, Nanotoxicology, 9 (2015) 162-171.
  72. Perumal, K., Ahmad, S., Mohd-Zahid, M. H., Wan Hanaffi, W. N., Iskander, Z. A., Six, J. L, Ferji, K., Jaafar, J., Boer, J. C., Plebanski, M., Uskokovic, V., Mohamud, R., “Nanoparticles and gut microbiota in colorectal cancer”, Frontiers in Nanotechnology, 3 (2021) 681760.
  73. Limage, R., Tako, E., Kolba, N., Guo, Z., García‐Rodríguez, A., Marques, C. N., Mahler, G. J., “TiO2 nanoparticles and commensal bacteria alter mucus layer thickness and composition in a gastrointestinal tract model”, Small, 16 (2020) 2000601.
  74. Dahiya, D. K., Puniya, A. K., “Impact of nanosilver on gut microbiota: a vulnerable link”, Future Microbiology, 13 (2018) 483-492.
  75. Pereira, D. I., Aslam, M. F., Frazer, D. M., Schmidt, A., Walton, G. E., McCartney, A. L., Gibson, G. R., Anderson, G. J., Powell, J. J., “Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral nano Fe (III)”, Microbiology Open, 4 (2015) 12-27.
  76. Pereira, D. I., Bruggraber, S. F., Faria, N., Poots, L. K., Tagmount, M. A., Aslam, M. F., Frazer, D. M., Vulpe, C. D., Anderson, G. J., Powell, J. J., “Nanoparticulate iron (III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans”, Nanomedicine, 10 (2014) 1877-1886.
  77. Foulkes, R., Man, E., Thind, J., Yeung, S., Joy, A., Hoskins, C., “The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives”, Biomaterials Science, 8 (2020) 4653-4664.
  78. Falkner, R., Jaspers, N., “Regulating nanotechnologies: risk, uncertainty and the global governance gap”, Global Environmental Politics, 12 (2012) 30-55.
  79. REFINE Nanomed (2022) Refine Nanomed — Regulatory Science Framework. http://refine-nanomed.eu/ (Accessed 14 September 2023).
  80. Halamoda-Kenzaoui, B., Vandebriel, R. J., Howarth, A., Siccardi, M., David, C. A. W., Liptrott, N. J., Santin, M., Borgos, S. E., Bremer-Hoffmann, S., Caputo, F., “Methodological needs in the quality and safety characterisation of nanotechnology-based health products: Priorities for method development and standardization”, Journal of Controlled Release, 36 (2021) 192-206.
  81. Slavin, Y. N., Asnis, J., Häfeli, U. O., Bach, H., “Metal nanoparticles: understanding the mechanisms behind antibacterial activity”, Journal of Nanobiotechnology, 15 (2017) 1-20.
  82. Khalil, I. A. H., Arida, I. A., Ahmed, M., “Introductory chapter: overview on nanomedicine market”, in Khalil, I. Current and Future Aspects of Nanomedicine, 2020, Intechopen.
  83. Sim, W., Barnard, R. T., Blaskovich, M. A. T., Ziora, Z. M., “Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007–2017)”, Antibiotics, 7 (2018) 93.
  84. Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., Chu, C. H., “The antibacterial mechanism of silver nanoparticles and its application in dentistry”, International Journal of Nanomedicine, 15 (2020) 2555.
  85. Zhou, Z., Peng, S., Sui, M., Chen, S., Huang, L., Xu, H., Jiang, T., “Multifunctional nanocomplex for surface-enhanced Raman scattering imaging and near-infrared photodynamic antimicrobial therapy of vancomycin-resistant bacteria”, Colloids and Surfaces B: Biointerfaces, 161 (2018) 394-402.
  86. dos Santos Jr, V. E., Vasconcelos Filho, A., Targino, A. G. R., Flores, M. A. P., Galembeck, A., Caldas Jr, A. F., Rosenblatt, A., “A new “silver-bullet” to treat caries in children–nano silver fluoride: a randomised clinical trial”, Journal of Dentistry, 42 (2014) 945-951.
  87. Fong, J., Wood, F., “Nanocrystalline silver dressings in wound management: a review”, International Journal of Nanomedicine, 1 (2006) 441-449.
  88. Potgieter, M. D., Meidany, P., “Evaluation of the penetration of nanocrystalline silver through various wound dressing mediums: an in vitro study”, Burns, 44 (2018) 596-602.
  89. Guggenbichler, J. P., Böswald, M., Lugauer, S., Krall, T., “A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters”, Infection, 27 (1999) S16-S23.
  90. Huang, N., Chen, X., Zhu, X., Xu, M., Liu, J., “Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research”, Biomaterials, 141 (2017) 296-313.
  91. Zhao, Z., Yan, R., Yi, X., Li, J., Rao, J., Guo, Z., Yang, Y., Li, W., Li, Y.-Q., Chen, C., “Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection”, ACS Nano, 11 (2017) 4428-4438.
  92. Gill, A. A., Singh, S., Thapliyal, N., Karpoormath, R., “Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review”, Microchimica Acta, 186 (2019) 1-19.
  93. Lee, W. S., Hsieh, T. C., Shiau, J. C., Ou, T. Y., Chen, F. L., Liu, Y. H., Yen, M.-Y., Hsueh, P.-R., “Bio-Kil, a nano-based disinfectant, reduces environmental bacterial burden and multidrug-resistant organisms in intensive care units”, Journal of Microbiology, Immunology and Infection, 50 (2017) 737-746.
  94. Li, Z., Zhang, Y., Wurtz, W., Lee, J. K., Malinin, V. S., Durwas-Krishnan, S., Meers, P., Perkins, W. R., “Characterization of nebulized liposomal amikacin (Arikace™) as a function of droplet size”, Journal of Aerosol Medicine and Pulmonary Drug Delivery, 21 (2008) 245-254.
  95. Clancy, J. P., Dupont, L., Konstan, M. W., Billings, J., Fustik, S., Goss, C. H., Lymp, L., Minic, P., Quittner, A. L., Rubenstein, R. C., Young, K. R., Saiman, L., Burns, J. L., Govan, J. R. W., Ramsey, B., Gupta, R., Arikace Study Group, “Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection”, Thorax, 68 (2013) 818-825.
  96. Antonelli, M., De Pascale, G., Ranieri, V. M., Pelaia, P., Tufano, R., Piazza, O., Zangrillo, A., Ferrario, A., De Gaetano, A., Guaglianone, E., Donelli, G., “Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive®) vs conventional catheters in intensive care unit patients”, Journal of Hospital Infection, 82 (2012) 101-107.
  97. Thombre, R., Jangid, K., Shukla, R., Dutta, N. K., “Alternative therapeutics against antimicrobial-resistant pathogens”, Frontiers in Microbiology, 10 (2019) 2173.
  98. Polson, A. G., Fuji, R. N., “The successes and limitations of preclinical studies in predicting the pharmacodynamics and safety of cell‐surface‐targeted biological agents in patients”, British Journal of Pharmacology, 166 (2012) 1600-1602.
  99. Theuretzbacher, U., Outterson, K., Engel, A., Karlen, A., “The global preclinical antibacterial pipeline”, Nature Reviews Microbiology, 18 (2020) 275–285.
  100. Babushkina, I. V., Mamonova, I. A., Ulyanov, V. Y., “Local treatment of local staphylococcal infection with complex preparations based on metal nanoparticles in the experiment”, Bulletin of Experimental Biology and Medicine, 167 (2019) 784-786.
  101. Augustine, R., Augustine, A., Kalarikkal, N., Thomas, S., “Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings’, Progress in Biomaterials, 5 (2016) 223-235.
  102. Augustine, R., Hasan, A., Yadu Nath, V. K., Thomas, J., Augustine, A., Kalarikkal, N., Moustafa, A. A., Thomas, S., “Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications”, Journal of Materials Science. Materials in Medicine, 29 (2018) 163.
  103. Augustine, R., Dalvi, Y. B., Yadu Nath, V. K., Varghese, R., Raghuveeran, V., Hasan, A., Thomas, S., Sandhyarani, N., “Yttrium oxide nanoparticle loaded scaffolds with enhanced cell adhesion and vascularization for tissue engineering applications”, Materials Science & Engineering. C, Materials for Biological Applications, 103 (2019) 109801.
  104. Augustine, R., Zahid, A. A., Hasan, A., Dalvi, Y. B., Jacob, J., “Cerium oxide nanoparticle-loaded gelatin methacryloyl hydrogel wound-healing patch with free radical scavenging activity”, ACS Biomaterials Science & Engineering, 7 (2021) 279–290.
  105. Sosedova, L. M., Novikov, M. A., Titov, E. A., Pozdnyakov, A. S., Korzhova, S. A., Ermakova, T. G., “Synthesis, antimicrobial properties, toxicity of a nanobiocomposite based on Ag (0) particles and poly (1-vinyl-1, 2, 4-triazole)”, Pharmaceutical Chemistry Journal, 52 (2019) 912-916.
  106. Lu, B., Lu, F., Ran, L., Yu, K., Xiao, Y., Li, Z., Dai, F., Wu, D., Lan. G., “Self-assembly of natural protein and imidazole molecules on gold nanoparticles: applications in wound healing against multi-drug resistant bacteria”, International Journal of Biological Macromolecules, 119 (2018) 505-516.
  107. Shah, A., Buabeid, M. A., Arafa, E. S. A., Hussain, I., Li, L., Murtaza, G., “The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin”, International Journal of Pharmaceutics, 564 (2019) 22-38.
  108. Aghamoosa, M., Arbabi-Bidgoli, S., Ghafari, S., Sabokbar, A., Harzandi, N., “Preclinical evaluation of silver-curcumin nano-gel: A complete assessment on a new topical antimicrobial product for burn”, Journal of Nanoanalysis, 7 (2020) 62-72.
  109. Skomorokhova, E. A., Sankova, T. P., Orlov, I. A., Savelev, A. N., Magazenkova, D. N., Pliss, M. G., Skvortsov, A. N., Sosnin, I. M., Kirilenko, D. A., Grishchuk, I. V., Sakhenberg, E. I., Polishchuk, E. V., Brunkov, P. N., Romanov, A. E., Puchkova, L. V., Ilyechova, E. Y., “Size-dependent bioactivity of silver nanoparticles: antibacterial properties, influence on copper status in mice, whole-body turnover”, Nanotechnology, Science and Applications, 13 (2020) 137.
  110. Hu, C. C., Chang, C. H., Chang, Y., Hsieh, J. H., Ueng, S. W. N., “Beneficial effect of TaON-Ag nanocomposite titanium on antibacterial capacity in orthopedic application”, International Journal of Nanomedicine, 15 (2020) 7889.
  111. Boomi, P., Ganesan, R., Poorani, G. P., Jegatheeswaran, S., Balakumar, C., Prabu, H. G., Anand, K., Marimuthu Prabhu, N., jeyakanthan, J., Saravanan, M., “Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions”, International Journal of Nanomedicine, 15 (2020) 7553.
  112. Martins da Silva Filho, P., Higor Rocha Mariano, P., Lopes Andrade, A., Barros Arrais Cruz Lopes, J., de Azevedo Pinheiro, A., Itala Geronimo de Azevedo, M., Carneiro de Medeiros, S., Alves de Vasconcelos, M., Gonçalvez da Cruz Fonseca, S., Barbosa Grangeiro, T., Gonzaga de França Lopes, L., Henrique Silva Sousa, E., Holanda Teixeira, E., Longhinotti, E. “Antibacterial and antifungal action of CTAB-containing silica nanoparticles against human pathogens”, International Journal of Pharmaceutics, 641 (2023) 123074.
  113. Sharaf, M., Sewid, A. H., Hamouda, H. I., Elharrif, M. G., El-Demerdash, A. S., Alharthi, A., Hashim, N., Hamad, A. A., Selim, S., Alkhalifah, D. H. M., Hozzein, W. N., Abdalla, M., Saber, T., “Rhamnolipid-coated iron oxide nanoparticles as a novel multitarget candidate against major foodborne coli serotypes and methicillin-resistant S. aureus”Microbiology Spectrum, 10 (2022) e0025022.
  114. Wan, G., Ruan, L., Yin, Y., Yang, T., Ge, M., Cheng, X., “Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii”International Journal of Nanomedicine, 11 (2016) 3789–3800.
  115. Krychowiak, M., Kawiak, A., Narajczyk, M., Borowik, A., Królicka, A., “Silver nanoparticles combined with naphthoquinones as an effective synergistic strategy against Staphylococcus aureus”, Frontiers in Pharmacology, 9 (2018) 816.
  116. Eibialy, N. A., Elhakim, H. K. A., Mohamed, M. H., Zakaria, Z., “Evaluation of the synergistic effect of chitosan metal ions (Cu2+/Co2+) in combination with antibiotics to counteract the effects on antibiotic resistant bacteria”, RSC Advances, 13 (2023) 17978-17990.
  117. Abdellatif, A. A. H., (2018) Topical silver nanoparticles for microbial activity. [online] ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03752424. (Accessed 14 September 2023).
  118. Fernandez, E., (2018) Effect of the incorporation of copper and zinc nanoparticles into dental adhesives (1170575). [online] ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03635138. (Accessed 14 September 2023).
  119. Hodhod, O. A., (2018) Antibacterial effect and clinical performance of chitosan modified glass ionomer. [online] ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04365270. (Accessed 14 September 2023).
  120. Ibrahim, M. A., Meera Priyadarshini, B., Neo, J., Fawzy, A. S., “Characterization of chitosan/TiO2 nano‐powder modified glass‐ionomer cement for restorative dental applications”, Journal of Esthetic and Restorative Dentistry, 29 (2017) 146-156.
  121. S. Food and Drug Administration. (2018). The Drug Development Process. Retrieved September 19, 2023, from https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process.
  122. Sharma, K., Ahmed, F., Sharma, T., Grover, A., Agarwal, M., Grover, S., “Potential repurposed drug candidates for tuberculosis treatment: progress and update of drugs identified in over a decade”, ACS Omega, 8 (2023) 17362-17380.
  123. Registrar Corp (2022) How to get FDA approval. [online] https://www.registrarcorp.com/how-to-get-fda-approval/ (Accessed 18 September 2023).
  124. BMP Medical (2022) What’s the Difference Between the FDA Medical Device Classes? [online] https://www.bmpmedical.com/blog/whats-difference-fda-medical-device-classes-2/ (Accessed 18 September 2023).
  125. FDA (2020) Premarket notification 510(k). [online] https://www.fda.gov/medical-devices/premarket-submissions/premarket-notification-510k#se. (Accessed 19 September 2023).
  126. FDA (2020) Classify your medical device. [online] https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device. (Accessed 19 September 2023).
  127. FDA (2018) Considering whether an FDA-regulated product involves the application of nanotechnology. [online] https://www.fda.gov/regulatory-information/search-fda-guidance documents/considering-whether-fda-regulated-product-involves-application-nanotechnology#intro. (Accessed 18 September 2023).
  128. Krause, D., (2015) K153723 Acticoat surgical dressing. [online] https://www.accessdata.fda.gov/cdrh_docs/pdf15/K153723.pdf. (Accessed 18 September 2023).
  129. FDA (2022) Drug approval package: Arikayce. [online] https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207356Orig1s000Approv.pdf. (Accessed 18 September 2023).
  130. FDA (2020) Accelerated approval program. [online] https://www.fda.gov/drugs/information-health-care-professionals-drugs/accelerated-approval-program. (Accessed 19 September 2023).
  131. Horie, M., Fujita, K., “Toxicity of metal oxides nanoparticles”, in Fishbein, J.C. Advances in Molecular Toxicology,Elsevier, 5 (2011) 145-178.
  132. Sarkar, A., Ghosh, M. and Sil, P. C. “Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles”, Journal of Nanoscience and Nanotechnology, 14 (2014) 730-743.
  133. Kang, H., Mintri, S., Menon, A. V., Lee, H. Y., Choi, H. S., Kim, J., “Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles”, Nanoscale, 7 (2015) 18848–18862.
  134. Santhosh, P. B. and Ulrih, N. P. “Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics”, Cancer Letters, 336 (2013) 8-17.
  135. Di Pietro, P., Strano, G., Zuccarello, L., Satriano, C., “Gold and silver nanoparticles for applications in theranostics”. Current Topics in Medicinal Chemistry, 16 (2016) 3069-3102.
  136. Charitidis, C. A., Georgiou, P., Koklioti, M. A., Trompeta, A. F., Markakis, V., “Manufacturing nanomaterials: from research to industry”, Manufacturing Review, 1 (2014) 11.