An Experimental Investigation of ‎Deposition of ZnS Materials on Glass ‎Substrate with SILAR‎

Document Type : Research Paper


Department of Physics, Faculty of Sciences, University Ibn Tofail, BP 14000, ‎ Kenitra, Morocco


   The formation of zinc sulfide (ZnS) is the most promising semiconductor material, particularly for optical and photovoltaic applications. The influence of the number of cycles on ZnS thin films deposited at room temperature was studied. According to our findings, the results showed that the number of deposition cycles affected the crystallinity, grain size, film thickness, and shape of the obtained films. The XRD analysis confirmed that the thin films fabricated had a crystalline structure of zinc blend ZnS with a preferred orientation in the plan (111). The gap energy of ZnS has been obtained in the range of 3.34 eV to 3.68 eV.


Main Subjects

  1. Santhamoorthy, A., Srinivasan, P., Krishnakumar, A., Rayappan, J., Babu, K. J., “SILAR-deposited nanostructured ZnO thin films: effect of deposition cycles on surface properties”, Mater. Sci., 44 (2021) 3.
  2. Shobana, T. S. T., Venkatesan, T. V. T., Kathirvel, D. K. D., “A Comprehensive Review on Zinc Sulphide Thin Film by Chemical Bath Deposition Techniques”, Environ. Nanotechnol., 9 (2020) 50-59.
  3. Naghavi, N., Abou-Ras, D., Allsop, N., Barreau, N., Bu¨ cheler, S., Ennaoui, A., Fischer, C.-H., Guillen, C., Hariskos, D., Herrero, J., Klenk, R., Kushiya, K., Lincot, D., Menner, R., Nakada, T., Platzer-Bjorkman, C., Spiering, S., Tiwari, A. N., rndahl, T. T., “Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: Present status and current developments”, Photovoltaics Res. Appl., 18 (2010) 411-433.
  4. Rahman, F., Podder, J., Ichimura, M., “Studies on Structural and Optical Characterization of In-Zn-S Ternary Thin Films Prepared by Spray Pyrolysis”, J. Opt. Photonics, 5 (2011) 79-86.
  5. Yildiz, A., Yurduguzel, B., Kayhan, B., Calin, G., Dobromir, M., Iacomi, F., “Electrical conduction properties of Co-doped ZnO nanocrystalline thin films”, Mater. Sci. Mater. Electron., 23 (2012) 425-430.
  6. Borah, J. P., Sarma, K. C., “Optical and optoelectronic properties of ZnS nanostructured thin film”, Acta Phys. Pol. A., 114 (2008) 713-719.
  7. Megersa Jigi, G., Abza, T., Girma, A., “Synthesis and characterization of aluminum dope zinc sulfide (Al:ZnS) thin films by chemical bath deposition techniques”, Appl. Biotechnol. Bioeng., 8 (2021) 55-58.
  8. El Farri, H., Bouachri, M., Fahoume, M., Frimane, A., Daoudi, O. “Theoretical simulation of ZnS buffer layer thin films with SCAPS-1D software for photovoltaic applications”, Chalcogenide Lett., 18 (2021) 457-465.
  9. Paire, M., Delbos, S., Vidal, J., Naghavi, N., Guillemoles, J. F., “Chalcogenide Thin-Film Solar Cells”, (2014).
  10. Patidar, D., Rathore, K. S., Saxena, N. S., Sharma, K., Sharma, T. P., “Energy band gap studies of cds nanomaterials”, Nano Res., 3 (2008) 97-102.
  11. Elfarri, H., Bouachri, M., Frimane, A., Fahoume, M., Daoudi, O., Battas, M., “Optimization of simulations of thickness layers, temperature and defect density of CIS based solar cells, with SCAPS-1D software, for photovoltaic application”, Chalcogenide Lett., 18 (2021) 201-213.
  12. Nisreen S. Turki, I. H., “Optical properties of ZnS and PEDOT thin films”, AIP Conf. Proceedings., (2021).
  13. Bouachri, M., El Farri, H., Beraich, M., Taibi, M., Nouneh, K., Fahoume, M., “Influence of cycle numbers on optical parameters of nanostructured Bi2S3 thin films using SILAR method for solar cells light harvesting”, Materialia, 20 (2021) 101-142.
  14. AL-Tememee, N. A. A., Jawad, F. K., Jabor, A. A., “Effect of the Number of Dipping Cycles for a Cadmium Oxide Film Prepared by SILAR Method”, Ibn AL- Haitham J. Pure Appl. Sci., 35 (2022) 28-36.
  15. Cheng, Y.-L., “Thin Films Processed by SILAR Method”, Intech, 11 (2016) 13.
  16. K. Ashith and K. Gowrish Rao, “Structural and Optical Properties of ZnS Thin Films by SILAR Technique obtained by acetate Precursor”, IOP Conf. Ser. Mater. Sci. Eng., 360 (2018) 1.
  17. Lethobane, Manthako Hycinth., “The synthesis and characterization of ZnS nanoparticles from zinc-based thiourea derivative complexes for potential use in photocatalysis“. Diss., (2017).
  18. Odunaike, K., Adenijf, O. A., Sheu, A. L., Fowodu, T. O., Alabi, T. A., “Effect of different silar cycle on chemically deposited zinc copper sulphide (Zncus)”, J. Thin Film Sci. Technol., (2021) 117-120.
  19. Asghar, M., Mahmood, K., Samaa BM, Rabia, S., Shahid, M. Y., “Effect of Annealing Temperature on the Structural and Optical Properties of ZnS Thin Films”, Today Proc., 2 (2015) 5430-5435.
  20. Bioki, H. A., Zarandi, M. B., “ZnS nanoparticles effect on electrical properties of Au/PANI-ZnS/Al heterojunction”, J. Nanosci. Nanotechnol., 15 (2019) 45-53.
  21. Dejan Zagorac, J. Z., “Band Gap Engineering of Newly Discovered ZnO/ZnS Polytypic Nanomaterials”, nanomaterials, (2022) 1-20.
  22. Ojha, K. S., “Structural and optical properties of PVA doped zinc sulphide thin films”, Optik (Stuttg)., 127 (2016) 2586-2589.
  23. Becker, F. G., “Covariance structural analysis of health-related indices in the elderly at home with a focus on subjective feelings of health”, 7 (2015) 1.
  24. Mohamed, S. H., Hadia, N. M. A., Awad, M. A., Shaaban, E. R., “Effects of thickness and Ag layer addition on the properties of ZnS thin films”, Acta Phys. Pol. A, 135 (2019) 420-425.
  25. Hurma, T., “The structural and optical properties of ZnS films optained by spraying solutions at different molarities”, Today Proc., 18 (2019) 1875-1881.
  26. Selvakumar, C., Deepa, M., “Synthesis and characterization of silver-cadmium sulphide nanoparticles using wet chemical route”, J. ChemTech Res., 7 (2014) 2675-2680.
  27. Au, B. W. C., Chan, K. Y., Sin, Y. K., Ng, Z. N., “Hot-point probe measurements of N-type and P-type ZnO films”, Int., 34 (2017) 30-34.
  28. Borse J., Garde, A., “Influence of complexing agent, pH of solution and thickness on morphological and optical properties of ZnS particles layer prepared by electrochemical deposition technique”, Nanosyst. Physics, Chem. Math., 11 (2020) 519-528.