Nanocatalytic Application of the Green ‎Synthesized Silver Nanoparticles for ‎Enhancement of the Enzymatic Activity of ‎Fungal Amylase and Cellulase ‎

Document Type : Research Paper

Authors

1 Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, Uttar ‎Pradesh 250005 India

2 Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, ‎Uttar Pradesh 250004, India

3 Department of Microbiology, IIMT University, Meerut, Uttar Pradesh 250001, India

4 Department of Fingerprinting, College of Biotechnology, Sardar Vallabhbhai Patel University ‎of Agriculture and Technology, Meerut Uttar Pradesh 250110, India

Abstract

   The present study aims to evaluate the effect of silver nanoparticles (AgNPs) on the enzymatic activity of fungal amylase and cellulase. The AgNPs were synthesized using aqueous fresh leaf extract of Camellia sinensis of AgNPs. The synthesis of nanoparticles was initially observed by a visible colour change and further confirmed by UV-Vis spectrum analysis. Fourier transform infrared spectroscopy (FTIR) identified the functional groups and their relevant biomolecules such as amide, alkene, carbonyl, and hydroxyl groups present in the aqueous leaf extract of C. sinensis. These biomolecules were responsible for the synthesis, capping, and stabilization of the AgNPs. The field emission scanning electron microscope (FESEM) image showed spherical and polydispersed AgNPs with a diameter of 22-55 ±2 nm. The energy dispersive X-ray (EDX) analysis illustrates 91.19% silver in the synthesized AgNPs. The effect of synthesized AgNPs on the enzymatic activity of fungal amylase and cellulase was evaluated using the 3,5-dinitrosalicylic acid (DNSA) method. The enzymatic activity of fungal amylase and cellulase increased significantly with increased concentration of AgNPs. The enhancement in the amylase and cellulase activity achieved through nanoparticles may be further explored for its industrial applications.

Keywords

Main Subjects


  1. Madakka, M., Jayaraju, N., Rajesh, N., “Mycosynthesis of silver nanoparticles and their characterization”, MethodsX, 5 (2018) 20-29.
  2. Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., Dhanaraj, S. A., “Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities”, Journal of saudi chemical society, 15 (2011) 113-120.
  3. Ajitha, B., Reddy, Y. A. K., Reddy, P. S., “Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract”, Materials science and engineering: C, 49 (2015) 373-381.
  4. Beltran Pineda, M. E., Lizarazo Forero, L. M., Sierra, Y.C.A., “Mycosynthesis of silver nanoparticles: a review”, BioMetals, (2022) 1-32.
  5. Alsaiari, N. S., Alzahrani, F. M., Amari, A., Osman, H., Harharah, H. N., Elboughdiri, N., Tahoon, M.A., “Plant and microbial approaches as green methods for the synthesis of nanomaterials: Synthesis, applications, and future perspectives”,Molecules, 28 (2023) 463.
  6. Gour, A., Jain, N.K., “Advances in green synthesis of nanoparticles”, Artificial cells, nanomedicine, and biotechnology, 47 (2019) 844-851.
  7. Majid, A., Faraj, H. R., “Green Synthesis of Copper Nanoparticles‎ using Aqueous Extract of Yerba mate (llex‎ Paraguarients St. Hill) and its Anticancer‎ Activity”, International Journal of Nanoscience and Nanotechnology, 18 (2022) 99-108.
  8. Roy, P., Das, B., Mohanty, A., Mohapatra, S., “Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study”, Applied Nanoscience, 7 (2017) 843-850.
  9. Zhang, D., Ma, X. L., Gu, Y., Huang, H., Zhang, G. W., “Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer”, Frontiers in chemistry, 8 (2020) 799.
  10. Barabadi, H., Webster, T. J., Vahidi, H., Sabori, H., Kamali, K. D., Shoushtari, F. J., Mahjoub, M. A., Rashedi, M., Mostafavi, E., Cruz, D. M., Hosseini, O., “Green nanotechnology-based gold nanomaterials for hepatic cancer therapeutics: a systematic review”, Iranian Journal of Pharmaceutical Research: IJPR, 19 (2020) 3.
  11. Mukunthan, K. S., Elumalai, E. K., Patel, T. N., Murty, V. R., “Catharanthus roseus: a natural source for the synthesis of silver nanoparticles”, Asian pacific journal of tropical biomedicine, 1 (2011) 270-274.
  12. Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S., “Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract”, Journal of radiation research and applied sciences, 9 (2016) 1-7.
  13. Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Baffa, O., “Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82 (2011) 140-145.
  14. Kuppusamy, P., Yusoff, M. M., Maniam, G. P., Govindan, N., “Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report”, Saudi Pharmaceutical Journal, 24 (2016.) 473-484.
  15. Roy, A., Bulut, O., Some, S., Mandal, A. K., Yilmaz, M. D., “Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity”, RSC advances, 9 (2019) 2673-2702.
  16. Sonawane, H., Shelke, D., Chambhare, M., Dixit, N., Math, S., Sen, S., Borah, S. N., Islam, N. F., Joshi, S. J., Yousaf, B., Rinklebe, J., “Fungi-derived agriculturally important nanoparticles and their application in crop stress management–Prospects and environmental risks”, Environmental Research, 212 (2022) 113543.
  17. Lahiri, D., Nag, M., Garai, S., Banerjee, R., Mukherjee, D., Dutta, B., Ray, R. R., “Mycosynthesis of silver nanoparticles: Mechanism and applications”, Nanobiotechnology(2021) 91-104.
  18. Abdel Rahim, K., Mahmoud, S. Y., Ali, A. M., Almaary, K. S., Mustafa, A. E. Z. M., Husseiny, S. M., “Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifera”, Saudi journal of biological sciences, 24 (2017) 208-216.
  19. Vijayakumar, M., Priya, K., Nancy, F. T., Noorlidah, A., Ahmed, A. B. A., “Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica”,Industrial Crops and Products, 41 (2013) 235-240.
  20. Kumar, V., Wadhwa, R., Kumar, N., Maurya, P. “A comparative study of chemically synthesized and Camellia sinensis leaf extract-mediated silver nanoparticles”, 3 Biotech, 9 (2019) 1-9.
  21. Jeronsia, J. E., Ragu, R., Sowmya, R., Mary, A. J., Das, S. J., “Comparative investigation on Camellia sinensis mediated green synthesis of Ag and Ag/GO nanocomposites for its anticancer and antibacterial efficacy, Surfaces and Interfaces, 21 (2020) 100787.
  22. Salehi, B., Jornet, P. L., Lopez, E. P. F., Calina, D., Sharifi-Rad, M., Ramirez-Alarcon, K., Forman, K., Fernandez, M., Martorell, M., Setzer, W. N., Martins, N., “Plant-derived bioactives in oral mucosal lesions: a key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties”, Biomolecules, 9 (2019) 106.
  23. Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., Fauzi, M. B., “The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action”, Nanomaterials, (2020) 1566.
  24. Barabadi, H., Vahidi, H., Damavandi Kamali, K., Rashedi, M., Saravanan, M., Antineoplastic biogenic silver nanomaterials to combat cervical cancer: a novel approach in cancer therapeutics, Journal of Cluster Science, 31 (2020) 659-672.
  25. Saravanan, M., Barabadi, H., Vahidi, H., Webster, T.J., Medina-Cruz, D., Mostafavi, E., Vernet-Crua, A., Cholula-Diaz, J.L. and Periakaruppan, P., “Emerging theranostic silver and gold nanobiomaterials for breast cancer: Present status and future prospects”, Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications, (2021) 439-456.
  26. Hassan, E. S., Mubarak, T. H., Abass, K. H., Chiad, S. S., Habubi, N. F., Rahid, M. H., Khadayeir, A. A., Dawod, M. O., Al-Baidhany, I.A., “Structural, morphological and optical characterization of tin doped zinc oxide thin film by (SPT)”, Journal of Physics: Conference Series, 1234 (2019) 012013.
  27. Dauthal, P., Mukhopadhyay, M., “Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications”, Industrial & Engineering Chemistry Research, 55 (2016) 9557-9577.
  28. Xu, J. J., Zhang, W. C., Guo, Y. W., Chen, X. Y., Zhang, Y. N., “Metal nanoparticles as a promising technology in targeted cancer treatment”, Drug Delivery, 29 (2022) 664-678.
  29. Gol, F., Aygun, A., Seyrankaya, A., Gur, T., Yenikaya, C., Sen, F., “Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications”, Materials Chemistry and Physics, 250 (2020) 123037.
  30. Khoshnevisan, K., Vakhshiteh, F., Barkhi, M., Baharifar, H., Poor-Akbar, E., Zari, N., Stamatis, H., Bordbar, A. K., Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances, Molecular Catalysis, 442 (2017) 66-73.
  31. Sheikh, I. A., Yasir, M., Khan, I., Khan, S. B., Azum, N., Jiffri, E. H., Kamal, M. A., Ashraf, G. M., Beg, M. A., “Lactoperoxidase immobilization on silver nanoparticles enhances its antimicrobial activity”, Journal of Dairy Research, 85 (2018) 460-464.
  32. Fang, J., Levchenko, I., Mai-Prochnow, A., Keidar, M., Cvelbar, U., Filipic, G., Han, Z. J., Ostrikov, K. K., “Protein retention on plasma-treated hierarchical nanoscale gold-silver platform”, Scientific reports, 5 (2015) 1-11.
  33. Ding, Y., Zhang, H., Wang, X., Zu, H., Wang, C., Dong, D., Lyu, M., Wang, S., “Immobilization of dextranase on nano-hydroxyapatite as a recyclable catalyst”, Materials, 14 (2020) 130.
  34. Ansari, S. A., Husain, Q., “Potential applications of enzymes immobilized on/in nano materials: A review”, Biotechnology advances, 30 (2012) 512-523.
  35. Ahmad, R., Sardar, M., “Enzyme immobilization: an overview on nanoparticles as immobilization matrix”, Biochemistry and Analytical Biochemistry, 4 (2015) 1.
  36. Datta, S., Christena, L. R., Rajaram, Y. R. S., “Enzyme immobilization: an overview on techniques and support materials”, 3 Biotech, 3 (2013) 1-9.
  37. Ernest, V., Shiny, P. J., Mukherjee, A., Chandrasekaran, N., “Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by α-amylase”, Carbohydrate Research, 352 (2012) 60-64.
  38. Falkowska, M., Molga, E. J., “Nanosilver: a catalyst in enzymatic hydrolysis of starch”, Polish Journal of Chemical Technology, 16 (2014) 111-113.
  39. Misson, M., Zhang, H., Jin, B., “Nanobiocatalyst advancements and bioprocessing applications”, Journal of the Royal Society Interface, 12 (2015) 20140891.
  40. Loo, Y. Y., Chieng, B. W., Nishibuchi, M., Radu, S., “Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis”, International journal of nanomedicine, 7 (2012) 4263.
  41. Rautela, A., Rani, J., “Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms”, Journal of Analytical Science and Technology, 10 (2019) 1-10.
  42. Singh, J., Kapoor, N., Verma, A., “A study to evaluate the effect of phyto-silver nanoparticles synthesized using Oxalis stricta plant leaf extract on extracellular fungal amylase and cellulase”, Materials Today: Proceedings, 18 (2019) 1342-1350.
  43. Ahmed, M. J., Murtaza, G., Rashid, F., Iqbal, J., “Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents”, Drug development and industrial pharmacy, 45 (2019) 1682-1694.
  44. Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., Dhanaraj, S. A., “Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities”, Journal of saudi chemical society, 15 (2011) 113-120.
  45. Vilchis Nestor, A. R., Sanchez Mendieta, V., Camacho Lopez, M. A., Gomez Espinosa, R. M., Camacho Lopez, M. A., Arenas Alatorre, J. A., “Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract”, Materials letters, 62 (2008) 3103-3105.
  46. Babu, S. A., Prabu, H. G., “Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature”, Materials Letters, 65 (2011) 1675-1677.
  47. Bindhani, B. K., Panigrahi, A. K., “Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum sanctum L (Tulsi) and study of its antibacterial activities”,  Nanomed. Nanotechnol, 1 (2015) S6.
  48. Jain, S., Mehata, M. S., “Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property”, Scientific reports, 7 (2017) 1-13.
  49. Flieger, J., Franus, W., Panek, R., Szymanska Chargot, M., Flieger, W., Flieger, M., Kołodziej, P., “Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity”. Molecules, 26 (2021) 4986.
  50. Kharabi Masooleh, A., Ahmadikhah, A., Saidi, A., “Green synthesis of stable silver nanoparticles by the main reduction component of green tea (Camellia sinensis)”, IET nanobiotechnology, 13 (2019) 183-188.
  51. Saware, K., Aurade, R. M., Kamala Jayanthi, P. D., Abbaraju, V., “Modulatory effect of citrate reduced gold and biosynthesized silver nanoparticles on α-amylase activity”, Journal of Nanoparticles, 2015 (2015) 829718.
  52. Wang, L., Hu, C., Shao, L., “The antimicrobial activity of nanoparticles: present situation and prospects for the future”, International journal of nanomedicine, 12 (2017) 1227.
  53. Khan, M. J., Husain, Q., Ansari, S. A., “Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase”, Applied microbiology and biotechnology, 97 (2013) 1513-1522.
  54. Krishnakumar, S., Janani, P., Mugilarasi, S., Kumari, G., Janney, J.B., “Chemical induced fabrication of silver nanoparticles (Ag-NPs) as nanocatalyst with alpha amylase enzyme for enhanced breakdown of starch”, Biocatalysis and agricultural biotechnology, 15 (2018) 377-383.
  55. Długosz, O., Matysik, J., Matyjasik, W., Banach, M., “Catalytic and antimicrobial properties of α-amylase immobilised on the surface of metal oxide nanoparticles”, Journal of Cluster Science, 32 (2021) 1609-1622.
  56. Rangnekar, A., Sarma, T.K., Singh, A.K., Deka, J., Ramesh, A., Chattopadhyay, A., “Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles”, Langmuir, 23 (2007) 5700-5706.
  57. Mishra, A., Sardar, M., “Cellulase assisted synthesis of nano-silver and gold: application as immobilization matrix for biocatalysis”, International journal of biological macromolecules, 77 (2015) 105-113.