Biosynthesis, Characterization of Nickel ‎‎(II) Oxide Nanoparticles NiO and their ‎High-Efficient Photocatalytic Application

Document Type : Research Paper


Physical-Chemistry of Processes and Materials Laboratory, Department of Applied Chemistry ‎and Environment, Faculty of Science and Technology, Hassan First University of Settat, ‎‎26000, Settat, Morocco‎



   This work sought to compare the photocatalytic efficiency of nickel (II) oxide nanoparticles (NiO-NPs) for the degradation of methylene blue (MB) and Rhodamine B dye (Rh B). NiO-NPs were synthesized by a green, simple and easy route using the plant extract H. Hirsuta. The morphological characteristics of the synthesized NiO NPs were characterized by SEM. In addition, UV-vis, XRD, FTIR and EDS analyses were also performed to investigate the optical properties, crystal size, functional groups and elemental composition of the NPs. These NiO NPs have a crystallinity size of 20.82 nm, and then were used for photocatalytic degradation of MB and Rh B in the presence of visible light irradiation.  The photocatalytic degradation rate under optimal conditions of MB and Rh B was found to be 97.19% and 79.42% , respectively. The kinetic study of photocatalytic degradation followed pseudo-first-order kinetics for MB and Rh B dyes. In addition, NiO-NPs were used for a 4-nitrophenol reduction activity reaching 91.17% for 3 cycles.


Main Subjects

  1. Khairnar, S. D., Shrivastava, V. S., “Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study”, Journal of Taibah University for Science, 13 (2019) 1108-1118.
  2. Cai, Z., Sun, Y., Liu, W., Pan, F., Sun, P., Fu, J., “An overview of nanomaterials applied for removing dyes from wastewater”, Environmental Science and Pollution Research, 24 (2017) 15882-15904.
  3. Chaudhary, K., Aadil, M., Zulfiqar, S., Ullah, S., Haider, S., Agboola, P. O., Warsi, F. M., Shakir, I., “Graphene oxide and reduced graphene oxide supported ZnO nanochips for removal of basic dyes from the industrial effluents”, Fullerenes, Nanotubes and Carbon Nanostructures, 29 (2021) 915-928.
  4. Büyüközkan, G., Göçer, F., “Digital Supply Chain: Literature review and a proposed framework for future research”, Computers in Industry, 97 (2018) 157-177.
  5. Alimirzaeva, Z. M., Isaev, A. B., Shabanov, N. S., Magomedova, A. G., Kadiev, M. V., Kaviyarasu, K., “Photoelectrocatalytic activity PbO2 loaded highly oriented TiO2 nanotubes arrays”, Materials Today: Proceedings, 36 (2021) 325-327.
  6. Hu, W., Chu, D., Wang, L., Chen, X., Yang, H., Sun, J., “Ultrasound-assisted synthesis of hexagonal cone-like Cu2O architectures with enhanced photocatalytic activity”, Nano-Structures & Nano-Objects, 12 (2017) 220-228.
  7. Li, J., Liu, Z., Wang, D., Zhu, Z., “Visible-light responsive carbon–anatase–hematite core–shell microspheres for methylene blue photodegradation”, Materials science in semiconductor processing, 27 (2014) 950-957.
  8. Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., Kumar, P., “Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation”, Journal of nanobiotechnology, 16 (2018) 1-24.
  9. Ahmed, S. F., Mofijur, M., Rafa, N., Chowdhury, A. T., Chowdhury, S., Nahrin, M., Saiful Islam, A. B. M., Ong, H. C., “Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges”, Environmental Research, 204 (2022) 111967.
  10. Chavali, M. S., Nikolova, M. P., “Metal oxide nanoparticles and their applications in nanotechnology”, SN applied sciences, 1 (2019) 1-30.
  11. Kalita, C., Saikia, P., “Magnetically separable tea leaf mediated nickel oxide nanoparticles for excellent photocatalytic activity”, Journal of the Indian Chemical Society, 98 (2021) 100213.
  12. Wan, X., Yuan, M., Tie, S. L., Lan, S., “Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue”, Applied Surface Science, 277 (2013) 40-46.
  13. Thirbika, S., Karthi, H., Premila, R., Prabhu, M. R., “Investigations on biosynthesized nickel oxide nanoparticles using Cymbopogon citratus leaf extract for antibacterial activity”, Materials Today: Proceedings, (2022).
  14. Ameen, F., Srinivasan, P., Selvankumar, T., Kamala-Kannan, S., Al Nadhari, S., Almansob, A., Dawoud, T., Govarthanan, M., “Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity”, Bioorganic Chemistry, 88 (2019) 102970.
  15. Shah, A., Haq, S., Rehman, W., Waseem, M., Shoukat, S., Rehman, M. U., “Photocatalytic and antibacterial activities of paeonia emodi mediated silver oxide nanoparticles”, Materials Research Express, 6 (2019) 045045.
  16. Esmaile, F., Koohestani, H., Abdollah-Pour, H., “Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract”, Environmental nanotechnology, monitoring & management, 14 (2020) 100303.
  17. Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., Dubey, N. K., “Insecticidal and fungicidal efficacy of essential oils and nanoencapsulation approaches for the development of next generation ecofriendly green preservatives for management of stored food commodities: an overview”, International Journal of Pest Management, (2021) 1-32.
  18. El-Ghmari, B., Farah, H., Ech-Chahad, A., “A new approach for the green biosynthesis of Silver Oxide nanoparticles Ag2O, characterization and catalytic application”, Bulletin of Chemical Reaction Engineering & Catalysis, 16(2021) 651-660.
  19. Rashmi, B. N., Harlapur, S. F., Gurushantha, K., Ravikumar, C. R., Kumar, M. A., Santosh, M. S., Kumar, V. G. D., Kumar, A. N., Murthy, H. A., “Facile green synthesis of lanthanum oxide nanoparticles using Centella Asiatica and Tridax plants: Photocatalytic, electrochemical sensor and antimicrobial studies”, Applied Surface Science Advances, 7 (2022) 100210.
  20. Esmaile, F., Koohestani, H., Abdollah-Pour, H., “Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract”, Environmental nanotechnology, monitoring & management, 14 (2020) 100303.
  21. Menon, S., Rajeshkumar, S., Kumar, V., “A review on biogenic synthesis of gold nanoparticles, characterization, and its applications”, Resource-Efficient Technologies, 3 (2017) 516-527.
  22. Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., Shinwari, K. Z., Mukherjee, S., “Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles”, Applied microbiology and biotechnology, 102 (2018) 6799-6814.
  23. Samuel, M. S., Jose, S., Selvarajan, E., Mathimani, T., Pugazhendhi, A., “Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol”, Journal of Photochemistry and Photobiology B: Biology, 202 (2020) 111642.
  24. Darbandi, M., Eynollahi, M., Badri, N., Mohajer, M. F., Li, Z. A., “NiO nanoparticles with superior sonophotocatalytic performance in organic pollutant degradation”, Journal of Alloys and Compounds, 889 (2021) 161706.
  25. Akbari, A., Sabouri, Z., Hosseini, H. A., Hashemzadeh, A., Khatami, M., Darroudi, M., “Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments”, Inorganic Chemistry Communications, 115 (2020) 107867.
  26. Boudiaf, M., Messai, Y., Bentouhami, E., Schmutz, M., Blanck, C., Ruhlmann, L., Bezzi, H., Tairi, A., Mekki, D. E., “Green synthesis of NiO nanoparticles using Nigella sativa extract and their enhanced electro-catalytic activity for the 4-nitrophenol degradation”, Journal of Physics and Chemistry of Solids, 153 (2021) 110020.
  27. Bhatia, P., Nath, M., “Green synthesis of p-NiO/n-ZnO nanocomposites: Excellent adsorbent for removal of congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater”, Journal of Water Process Engineering, 33 (2020) 101017.
  28. Tiwari, B., Choudhary, R. N. P., “Effect of Mn-substitution on structural and dielectric properties of Pb (Zr0. 65− xMnxTi0. 35) O3 ceramics”, Solid State Sciences, 11 (2009) 219-223.
  29. Adinaveen, T., Karnan, T., Selvakumar, S. A. S., “Photocatalytic and optical properties of NiO added Nephelium lappaceum L. peel extract: An attempt to convert waste to a valuable product”, Heliyon, 5 (2019) e01751.
  30. Farhadi, S., Kazem, M., Siadatnasab, F., “NiO nanoparticles prepared via thermal decomposition of the bis (dimethylglyoximato) nickel (II) complex: A novel reusable heterogeneous catalyst for fast and efficient microwave-assisted reduction of nitroarenes with ethanol”, Polyhedron, 30 (2011) 606-613.
  31. Ramasami, A. K., Reddy, M. V., Balakrishna, G. R., “Combustion synthesis and characterization of NiO nanoparticles”, Materials Science in Semiconductor Processing, 40 (2015) 194-202.
  32. Zorkipli, N. N. M., Kaus, N. H. M., Mohamad, A. A., “Synthesis of NiO nanoparticles through sol-gel method”, Procedia chemistry, 19 (2016) 626-631.
  33. Ghazal, S., Akbari, A., Hosseini, H. A., Sabouri, Z., Forouzanfar, F., Khatami, M., Darroudi, M., “Sol-gel biosynthesis of nickel oxide nanoparticles using Cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities”, Journal of Molecular Structure, 1217 (2020) 128378.
  34. Rahman, M. A., Radhakrishnan, R., Gopalakrishnan, R., “Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method”, Journal of Alloys and Compounds, 742 (2018) 421-429.
  35. Wang, W. N., Itoh, Y., Lenggoro, I. W., Okuyama, K., “Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis”, Materials Science and Engineering: B, 111 (2004) 69-76.
  36. Wei, Z., Qiao, H., Yang, H., Zhang, C., Yan, X., “Characterization of NiO nanoparticles by anodic arc plasma method”, Journal of alloys and compounds, 479 (2009) 855-858.
  37. Gebretinsae, H. G., Tsegay, M. G., Nuru, Z. Y., “Biosynthesis of nickel oxide (NiO) nanoparticles from cactus plant extract”, Materials Today: Proceedings, 36 (2021) 566-570.
  38. Bahammou, Y., Moussaoui, H., Lamsayeh, H., Tagnamas, Z., Kouhila, M., Ouaabou, R., Lamharrar, A., Idlimam, A., “Water sorption isotherms and drying characteristics of rupturewort (Herniaria hirsuta) during a convective solar drying for a better conservation”, Solar Energy, 201 (2020) 916-926.
  39. Van Dooren, I., Faouzi, M. E. A., Foubert, K., Theunis, M., Pieters, L., Cherrah, Y., Apers, S., “Cholesterol lowering effect in the gall bladder of dogs by a standardized infusion of Herniaria hirsuta L.”, Journal of ethnopharmacology, 169 (2015) 69-75.
  40. Qi, Y., Qi, H., Li, J., Lu, C., “Synthesis, microstructures and UV–vis absorption properties of β-Ni (OH) 2 nanoplates and NiO nanostructures”, Journal of crystal growth, 310 (2008) 4221-4225.
  41. Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., Darroudi, M., “Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects”, Green Chemistry Letters and Reviews, 14 (2021) 404-414.
  42. Fall, A., Sackey, J., Mayedwa, N., Ngom, B. D., “Investigation of structural and optical properties of CdO nanoparticles via peel of Citrus x sinensis”, Materials Today: Proceedings, 36 (2021) 298-302.
  43. Ramesh, R., Yamini, V., Sundaram, S. J., Khan, F. L. A., Kaviyarasu, K., “Investigation of structural and optical properties of NiO nanoparticles mediated by Plectranthus amboinicus leaf extract”, Materials Today: Proceedings, 36 (2021) 268-272.
  44. Yousaf, S., Zulfiqar, S., Shahi, M. N., Warsi, M. F., Al-Khalli, N. F., Aboud, M. F. A., Shakir, I., “Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route”, Ceramics International, 46 (2020) 3750-3758.
  45. Amor, M. B., Boukhachem, A., Boubaker, K., Amlouk, M., “Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications”, Materials science in semiconductor processing, 27 (2014) 994-1006.
  46. Kannan, K., Radhika, D., Nikolova, M. P., Sadasivuni, K. K., Mahdizadeh, H., Verma, U., “Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities”, Inorganic Chemistry Communications, 113 (2020) 107755.
  47. Miri, A., Mahabbati, F., Najafidoust, A., Miri, M. J., Sarani, M., “Nickel oxide nanoparticles: biosynthesized, characterization and photocatalytic application in degradation of methylene blue dye”, Inorganic and Nano-Metal Chemistry, 52 (2022) 122-131.
  48. Bhatia, P., Nath, M., “Nanocomposites of ternary mixed metal oxides (Ag2O/NiO/ZnO) used for the efficient removal of organic pollutants”, Journal of Water Process Engineering, 49 (2022) 102961.
  49. Aravind, M. R., Kalaiselvi, C., Revathi, B., Grace, A. N., Pitchaimuthu, S., Suresh, S., Sindhu, M., Chandar, N. K., “Influence of various concentrations of cetyltrimethylammonium bromide on the properties of nickel oxide nanoparticles for supercapacitor application”, Nano, 16 (2021) 2150138.
  50. Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., Darroudi, M., “Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity”, Polyhedron, 178 (2020) 114351.
  51. Karthik, K., Shashank, M., Revathi, V., Tatarchuk, T., “Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities”, Molecular Crystals and Liquid Crystals, 673 (2018) 70-80.
  52. Sabouri, Z., Akbari, A., Hosseini, H. A., Hashemzadeh, A., Darroudi, M., “Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects”, Journal of Molecular Structure, 1191 (2019) 101-109.
  53. Sabouri, Z., Akbari, A., Hosseini, H. A., Hashemzadeh, A., Darroudi, M., “Eco-Friendly Biosynthesis of Nickel Oxide Nanoparticles Mediated by Okra Plant Extract and Investigation of Their Photocatalytic, Magnetic, Cytotoxicity, Antibacterial Properties”, J Clust Sci., 30 (2019) 1425-1434.
  54. Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., Darroudi, M., “Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes”, Bioprocess Biosyst Eng, 43 (2020) 1209-1218.
  55. Sabouri, Z., Sabouri, M., Amiri, M. S., Khatami, M., Darroudi, M., “Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties”, Materials Technology, 37 (2022) 555-568.
  56. Sabouri, Z., Rangrazi, A., Amiri, M. S., Khatami, M., Darroudi, M., “Green synthesis of nickel oxide nanoparticles using Salvia hispanica L. (chia) seeds extract and studies of their photocatalytic activity and cytotoxicity effects”, Bioprocess Biosyst Eng, 44 (2021) 2407-2415.
  57. Tju, H., Taufik, A., Saleh, R., “Enhanced UV Photocatalytic Performance of Magnetic Fe3O4/CuO/ZnO/NGP Nanocomposites”, Phys.: Conf. Ser., 710 (2016) 012005.
  58. Karthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., Sivaramakrishnan, S., “Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities”, J Mater Sci: Mater Electron, 29 (2018) 5459-5471.
  59. Linda, T., Muthupoongodi, S., Shajan, X. S., Balakumar, S.,“Fabrication and characterization of chitosan templated CdO/NiO nano composite for dye degradation”, Optik, 127 (2016) 8287-8293.
  60. El-Shafai, N. M., El-Khouly, M. E., El-Kemary, M., Ramadan, M. S., Masoud, M. S., “Graphene oxide–metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye”, RSC Adv., 8 (2018) 13323-13332.
  61. Munawar, T., Iqbal, F., Yasmeen, S., Mahmood, K. Hussain, A., “Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity”, Ceramics International, 46 (2020) 2421-2437.
  62. Aboelfetoh, E. F., Aboubaraka, A. E., Ebeid, E. Z. M., “Synergistic Effect of Iron and Copper Oxides in the Removal of Organic Dyes Through Thermal Induced Catalytic Degradation Process”, Journal of Cluster Science, (2023) 1-15.