Dye Excitation and Surface Defects ‎Mediated Photocatalytic Behavior of ‎Vertically Aligned ZnO Nanorods

Document Type : Research Paper


1 Nanomaterials Laboratory, Department of Physics, Sri S. Ramasamy Naidu Memorial College, ‎Sattur - 626 203, Tamil Nadu, India‎

2 Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan ‎University, Tiruchirappalli - 620 024, Tamil Nadu, India‎

3 Department of Physical-Chemistry, Faculty of Chemical Sciences, ‎ University of Concepcion, Chile

4 Department of Chemistry, Anna University, BIT Campus, Tiruchirappalli - 620 024, ‎ Tamil Nadu, India


   Photocatalyst for the degradation of the organic dye molecules has been investigated for the highly uniform vertically aligned ZnO nanorods grown on silicon substrates by radio frequency magnetron sputtering. An intense green luminescence located at 2.192 eV is corroborated by the singly charged oxygen vacancies and it is responsible for the visible-light-driven photocatalytic response in ZnO nanorods. The higher photocatalytic activity of organic dyes under the irradiation of visible light is enhanced due to the light absorption and better charge separation (e--h+) in vertically aligned ZnO nanorods. Further, the dye excitation is also accountable for the degradation mechanism besides surface defects under solar irradiation. Moreover, the ZnO nanorods exhibit suppressed photo corrosion and high photo-stability as evidenced by the recovery and recycling studies.


Main Subjects

  1. Gnanasekar, P., Kulandaivel, J., “Two‐dimensional materials for renewable energy devices”, Encyclopedia of Applied Physics, (2021) 1-39.
  2. Mandal, P., Debbarma, J., Saha, M., “Graphene assisted photodegradation of ‎pollutant dyes and its pragmatic effect on ‎lemna minor and eichhornia crassipes”, J. Nanosci. Nanotechnol., 18 (2022) 109-122.
  3. Raju, S., Ashok, D., Boddu, A. R., “Leucaena leucocephala mediated green synthesis of silver nanoparticles and their antibacterial, dye degradation and antioxidant properties”, J. Nanosci. Nanotechnol., 18 (2022) 65-78.
  4. Chung, Y. A., Chang, Y. C., Lu, M. Y., Wang, C. Y., Chen, L. J., “Synthesis and photocatalytic activity of small-diameter ZnO nanorods”, Electrochem. Soc., 156 (2009) 75.
  5. Heydari, S., Shirmohammadi Aliakbarkhani, Z., Hosseinpour Zaryabi, M., “Photocatalytic degradation of safranin ‎dye from aqueous solution using nickel ‎nanoparticles synthesized by plant ‎leaves”, J. Nanosci. Nanotechnol., 16 (2020) 153-165.
  6. Anaraki Firooz, A., Keyhani, M., “The effect of different dopants (Cr, Mn, ‎Fe, Co, Cu and Ni) on photocatalytic ‎properties of ZnO nanostructures”, J. Nanosci. Nanotechnol., 16 (2020) 59-65.
  7. Maeda, K., Teramura, K., Lu, D., Saito, N., Inoue, Y., Domen, K., “Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting”, Chem., Int. Ed., 45 (2006) 7806-7809.
  8. Zheng, Y., Chen, C., Zhan, Y., Lin, X., Zheng, Q., Wei, K., Zhu, J., Zhu, Y., “Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property”, Chem., 46 (2007) 6675-6682.
  9. Kumar, S. G., Devi, L. G., “Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics”, Phys. Chem., 115 (2011) 13211-13241.
  10. Ganeshbabu, M., Kannan, N., Sundara Venkatesh, P., Paulraj, G., Jeganathan, K., Mubarak Ali, D., “Synthesis and characterization of BiVO4 nanoparticles for environmental applications”, RSC Adv., 10 (2020) 18315-18332.
  11. Vijayalakshmi, S., Kumar, E., Sundara Venkatesh, P., Raja, A., “Preparation of zirconium oxide with polyaniline nanocatalyst for the decomposition of pharmaceutical industrial wastewater”, Ionics, 26 (2020) 1507-1513.
  12. Vijayalakshmi, S., Kumar, E., Ganeshbabu, M., Sundara Venkatesh, P., Rathnakumar, K., “Structural, electrical, and photocatalytic investigations of PANI/ZnO nanocomposites”, Ionics, 27 (2021) 2967-2977.
  13. Pal, S., Mondal, S., Maity, J., Mukherjee, R., “Synthesis and characterization of ZnO nanoparticles using Moringa Oleifera leaf extract: investigation of photocatalytic and antibacterial activity”, J. Nanosci. Nanotechnol., 14 (2018) 111-119.
  14. Rehman, S., Ullah, R., Butt, A. M., Gohar, N. D., “Strategies of making TiO2 and ZnO visible light active”, Hazard. Mater., 170 (2009) 560-569.
  15. Di Paola, A., García-López, E., Marcì, G., Palmisano, L., “A survey of photocatalytic materials for environmental remediation”, Hazard. Mater., 211 (2012) 3-29.
  16. Lam, S. M., Sin, J. C., Abdullah, A. Z., Mohamed, A. R., “Degradation of wastewaters containing organic dyes photocatalyzed by zinc oxide A review”, Water. Treat., 41 (2012) 131-169.
  17. Djurisic, A. B., Chen, X., Leung, Y. H., Ng, A. M. C., “ZnO nanostructures: growth, properties, and applications”, Mater. Chem., 22 (2012) 6526-6535.
  18. Portela, R., Hernández-Alonso, M. D., “Environmental applications of photocatalysis”, Green Energy Technol., 71 (2013) 35-66.
  19. Kaur, J., Bansal, S., Singhal, S., “Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method”, Physica B Condens., 416 (2013) 33-38.
  20. Wan, Q., Wang, T. H., Zhao, J. C., “Enhanced photocatalytic activity of ZnO nanotetrapods”, Phys. Lett., 87 (2005) 083105.
  21. Zhang, D., Liu, X., Wang, X., “Growth and photocatalytic activity of ZnO nanosheets stabilized by Ag nanoparticles”, Alloys Compd., 509 (2011) 4972-4977.
  22. Wang, Y., Li, X., Wang, N., Quan, X., Chen, Y., “Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities”, Purif. Technol., 62(3) (2008) 727-732.
  23. Baruah, S., Jaisai, M., Imani, R., Nazhad, M. M., Dutta, J., “Photocatalytic paper using zinc oxide nanorods”, Sci. Technol. Mater., 11(5) (2010) 055002.
  24. Leelavathi, A., Madras, G., Ravishankar, N., “Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods”, Chem. Chem. Phys., 15 (2013) 10795-10802.
  25. Kuo, T. J., Lin, C. N., Kuo, C. L., Huang, M. H., “Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts”, Mater., 19 (2007) 5143-5147.
  26. Xie, Y., Yuan, C., “Transparent TiO2 sol nanocrystallites mediated homogeneous-like photocatalytic reaction and hydrosol recycling process”, J. Mater. Sci., 40 (2005) 6375-6383.
  27. Liu, H., Yang, J., Liang, J., Huang, Y., Tang, C., “ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light”, Am. Ceram., 91 (2008) 1287-1291.
  28. Yang, J. L., An, S. J., Park, W. I., Yi, G. C., Choi, W., “Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition”, Mater., 16 (2004) 1661-1664.
  29. Maness, P. C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., Jacoby, W. A., “Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism”, Environ. Microbiol., 65 (1999) 4094-4098.
  30. Sundara Venkatesh, P., Purushothaman, V., Esakki Muthu, S., Arumugam, S., Ramakrishnan, V., Jeganathan, K., Ramamurthi, K., “Role of point defects on the enhancement of room temperature ferromagnetism in ZnO nanorods”, Eng. Comm., 14 (2012) 4713-4718.
  31. Sundara Venkatesh, P., Jeganathan, K., “Investigations on the growth and characterization of vertically aligned zinc oxide nanowires by radio frequency magnetron sputtering”, Solid State Chem,, 200 (2013) 84-89.
  32. Sundara Venkatesh, P., Jeganathan, K., “Investigations on the morphological evolution of zinc oxide nanostructures and their optical properties”, , 16 (2014) 7426.
  33. Sundara Venkatesh, P., Ramakrishnan, V., Jeganathan, K., “Investigations on the growth of manifold morphologies and optical properties of ZnO nanostructures grown by radio frequency magnetron sputtering”, AIP Advances, 3 (2013) 082133.
  34. Wang, H. L., Ding, W. Y., Liu, C. Q., Chai, W. P., “Influence of O2 flux on compositions and properties of ITO films deposited at room temperature by direct-current pulse magnetron sputtering”, Phys. Lett., 27 (2010) 127302.
  35. Gao, D., Zhang, J., Yang, G., Zhang, J., Shi, Z., Qi, J., Zhang, Z., Xue, D., “Ferromagnetism in ZnO Nanoparticles Induced by Doping of a Nonmagnetic Element”, Phys. Chem. C., 114 (2010) 13477-13481.
  36. Sundara Venkatesh, P., Balakumar, S., Jeganathan, K., “Post-annealing effects on the structural and optical properties of vertically aligned undoped ZnO nanorods grown by radio frequency magnetron sputtering”, RSC Adv., 4 (2014) 5030-5035.
  37. Coppa, B. J., Davis, R. F., Nemanich, R. J., “Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(0001̄)”, Phys. Lett., 82 (2003) 400.
  38. Chen, M., Pei, Z. L., Wang, X., Yu, Y. H., Liu, X. H,. Sun, C., Wen, L. S., “Intrinsic limit of electrical properties of transparent conductive oxide films”, Phys. D: Appl. Phys., 33 (2000) 2538-2548.
  39. Kim, Y., Kang, S., “Calculation of Formation Energy of Oxygen Vacancy in ZnO Based on Photoluminescence Measurements”, Phys. Chem. B., 114 (2010) 7874-7878.
  40. Hyung Kim, D., Youn Yoo, D., Kwang Jung, H., Hwan Kim, D., Yeol Lee, S., “Origin of instability by positive bias stress in amorphous Si-In-Zn-O thin film transistor”, Phys. Lett., 99 (2011) 2009.
  41. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J., Morkoc, H., “A comprehensive review of ZnO materials and devices”, Appl. Phys., 98 (2005) 041301.
  42. Vanheusden, K., Seager, C. H., Warren, W. L., Tallant, D. R., Voigt, J. A., “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors”, Phys. Lett.,68 (1996) 403.
  43. Fang, Z., Wang, Y., Xu, D., Tan, Y., Liu, X., “Blue luminescent center in ZnO films deposited on silicon substrates”, Optical Materials, 26 (2004) 239-242.
  44. Cao, B., Cai, W., Zeng, H., “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays”, Phys. Lett.,88 (2006) 161101.
  45. Liu, H., Zeng, F., Lin, Y., Wang, G., Pan, F., “Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films”, Phys. Lett., 102 (2013) 181908.
  46. Varshni, Y. P., “Temperature dependence of the energy gap in semiconductors”, Physica, 34 (1967) 149-154.
  47. Alvi, N. H., Riaz, M., Tzamalis, G., Nur, O., Willander, M., "Junction temperature in n-ZnO nanorods/(p-4H-SiC, p-GaN, and p-Si) heterojunction light-emitting diodes", Solid State Electron., 54 (2010) 536-540.
  48. Wang, J., Liu, P., Fu, X., Li, Z., Han, W., Wang, X., "Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in Nafion membranes", Langmuir, 25 (2009) 1218-1223.
  49. Wang, B., Li, C., Cui, H., Zhang, J., Zhai, J., Li, Q., "Fabrication and enhanced visible-light photocatalytic activity of Pt-deposited TiO2 hollow nanospheres", Eng. J., 223 (2013) 592-603.
  50. Baruah, S., Mahmood, M. A., Myint, M. T. Z., Bora, T., Dutta, J., "Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods", Beilstein J. Nanotechnol., 1 (2010) 14–20.
  51. Bao, N., Feng, X., Yang, Z., Shen, L., Lu, X., "Highly Efficient Liquid-Phase Photooxidation of an Azo Dye Methyl Orange over Novel Nanostructured Porous Titanate-Based Fiber of Self-Supported Radially Aligned H2Ti8O171.5H2O Nanorods", Environ. Sci. Technol., 38 (2004) 2729-2736.
  52. Długosz, O., Banach, M., "Continuous synthesis of photocatalytic nanoparticles of pure ZnO and ZnO modified with metal nanoparticles", Nanostructure Chem., 11 (2021) 601-617.
  53. Perez, T., Imam, A., Pilloud, D., Ghanbaja, J., Miska, P., Belmonte, T., Gries, T., "Tunable morphologies of ultrathin ZnO nanostructures synthesized by a plasma afterglow-assisted oxidation process and their photocatalytic properties", Plasma Sources Sci. Technol., 28 (2019) 045008.
  54. Rabbani, M., Shokraiyan, J., Rahimi, R., Amrollahi, R., "Comparison of photocatalytic activity of ZnO, Ag-ZnO, Cu-ZnO, Ag, Cu-ZnO and TPPS/ZnO for the degradation of methylene blue under UV and visible light irradiation", Water Sci. Technol., 84 (2021) 1813-1825.
  55. Isai, K. A., Shrivastava, V. S., "Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol-gel method: a comparative study", SN Appl.Sci., 1 (2019)
  56. Li, Y-F.,Zhang, W-P., Li,, Yu, Y., “TiO2 nanoparticles with high ability for selective adsorption and photodegradation of textile dyes under visible light by feasible preparation”, J. Phys. Chem. Solids, 75 (2014) 86-63.
  57. Ariyanti,,Maillot, M., Gao, W., “Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation”, J. Environ. Chem. Eng., 6 (2018) 539-548.
  58. Verma,, Tirumala Rao, B.,Singh, R., Kaul, R., “Photocatalytic degradation kinetics of cationic and anionic dyes using Au–ZnO nanorods: Role of pH for selective and simultaneous degradation of binary dye mixtures”, Ceram. Int., 47 (2021) 34751-34764.
  59. Divya, B., Karthikeyan, C., Rajasimman, M., “Chemical synthesis of zinc oxide nanoparticles and its application of dye decolourization”, J. Nanosci. Nanotechnol., 14 (2018) 267 - 275.