A Review on Static and Dynamic ‎Characterization of Digital Circuits in ‎CNTFET and CMOS Technology

Document Type : Research Paper

Authors

1 Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing ‎‎(STIIMA), National Research Council of Italy, 70125, Bari, Italy‎

2 Electronic Devices Laboratory, Department of Electrical and Information Engineering, ‎Polytechnic University of Bari, 70126, Bari, Italy

Abstract

   In this paper we review a procedure to characterize digital circuits in CNTFET and CMOS technology in order to compare them. To achieve this goal, we use a semi-empirical compact CNTFET model, already proposed by us, and the BSIM4 model for MOS device. After a brief review of these models, as example, we review the static and dynamic characterization of NAND gate and Full Adder, using the software Advanced Design System (ADS) which is compatible with the Verilog-A programming language. The obtained results allow to highlight the differences between the two technologies.

Keywords

Main Subjects


  1. Marani, R., Perri, A. G., “CNTFET Modelling for Electronic Circuit Design”, Electro Chemical Transactions, 23 (2009) 429 - 437.
  2. Gelao, G., Marani, R., Diana, R., Perri, A. G., “A Semi-Empirical SPICE Model for n-type Conventional CNTFETs”, IEEE Transactions on Nanotechnology, 10 (2011) 506-512.
  3. Marani, R., Perri, A. G., “A Compact, Semi-empirical Model of Carbon Nanotube Field Effect Transistors oriented to Simulation Software”, Current Nanoscience, 7 (2011) 245-253.
  4. Marani, R., Perri, A. G., “A DC Model of Carbon Nanotube Field Effect Transistor for CAD Applications”, International Journal of Electronics, 99 (2012) 427 - 444.
  5. Marani, R., Gelao, G., Perri, A. G., “Modelling of Carbon Nanotube Field Effect Transistors oriented to SPICE software for A/D circuit design”, Microelectronics Journal, 44 (2013) 33-39.
  6. Marani, R., Perri, A. G., “Modelling of CNTFETs for Computer Aided Design of A/D Electronic Circuits”, Current Nanoscience, 10 (2014) 326-333.
  7. Gelao, G., Marani, R., Pizzulli, L., Perri, A. G., “A Model to Improve Analysis of CNTFET Logic Gates in Verilog-A-Part I: Static Analysis”, Current Nanoscience, 11 (2015) 515-526.
  8. Gelao, G., Marani, R., Pizzulli, L., Perri, A. G., “A Model to Improve Analysis of CNTFET Logic Gates in Verilog-A-Part II: Dynamic Analysis”, Current Nanoscience, 11 (2015) 770-783.
  9. Marani, R., Perri, A. G., “Analysis of CNTFETs Operating in SubThreshold Region for Low Power Digital Applications”, ECS Journal of Solid State Science and Technology, 5 (2016) M1-M4.
  10. Marani, R., Perri, A. G., “A De-Embedding Procedure to Determine the Equivalent Circuit Parameters of RF CNTFETs”, ECS Journal of Solid State Science and Technology, 5 (2016) M31-M34.
  11. Marani, R., Perri, A. G., “A Simulation Study of Analogue and Logic Circuits with CNTFETs”, ECS Journal of Solid State Science and Technology, 5 (2016) M38-M43.
  12. Marani, R., Perri, A .G., “A Comparison of CNTFET Models through the Design of a SRAM Cell”, ECS Journal of Solid State Science and Technology, 5 (2016) M118-M126.
  13. Marani, R., Perri, A. G., “CNTFET-Based Design of Current Mirror in Comparison with MOS Technology”, ECS Journal of Solid State Science and Technology, 6 (2017) M60-M68.
  14. Marani, R., Perri, A. G., “Design and Simulation Study of Full Adder Circuit Based on CNTFET and CMOS Technology by ADS”, ECS Journal of Solid State Science and Technology, 7 (2018) M108-M122.
  15. Marani, R., Perri, A. G., “Static Simulation of CNTFET-based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14 (2018) 121-131.
  16. Marani, R., Perri, A. G., “Dynamic Simulation of CNTFET-based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14 (2018) 277-288.
  17. Gelao, G., Marani, R., Perri, A. G., “Effects of Temperature in CNTFET-Based Design of Analog Circuits”, ECS Journal of Solid State Science and Technology, 7 (2018) M16-M21.
  18. Gelao, G., Marani, R., Perri, A. G., “Effects of Temperature in CNTFET-Based Design of Digital Circuits”, ECS Journal of Solid State Science and Technology, 7 (2018) M41-M48.
  19. Marani, R., Perri, A. G., “A Review on the Study of Temperature Effects in the Design of A/D Circuits based on CNTFET”, Current Nanoscience, 15 (2019), 471-480.
  20. Marani, R., Perri, A. G., “Temperature Dependence of I-V Characteristics in CNTFET Models: A Comparison”, International Journal of Nanoscience and Nanotechnology, 17 (2021) 33-39.
  21. Gelao, G., Marani, R., Perri, A. G., “Effect of CNT Parameter Variations on CNTFET Amplifier Performance”, ECS Journal of Solid State Science and Technology, 12 (2023)
  22. Verilog-AMS language reference manual, Version 2.2, (2014).
  23. http://bsim.berkeley.edu/models/bsim4/, BSIM Group, Berkeley, University of California, USA, (2020).
  24. Raychowdhury, A., Mukhopadhyay, S., Roy, K., “A circuit-compatible model of ballistic carbon nanotube field-effect transistors”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23 (2004) 1411-1420.
  25. Pregaldiny, F., Lallement, C., Kammerer, J. B., “Design-oriented compact models for CNTFETs”, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, DTIS 2006, Tunis, Tunisia, (2006) 34-39.
  26. Prégaldiny, F., Lallement, C., Diange, B., Sallese, M., Krummenacher, M., Compact Modeling of Emerging Technologies with VHDL-AMS. Huss SA, editor, Advances in Design and Specification Languages for Embedded Systems, Dordrecht: Springer Netherlands, ISBN: 978-1-4020-6147-9, (2007).
  27. Datta S., Cambridge Studies in Semiconductor Physics and Microelectronic Engineering 3. Electronic Transport in Mesoscopic Systems, New York: Cambridge University Press, Online ISBN: 978051180577, (1995).
  28. Avouris, P., Chen, Z., Perebeinos, V., “Carbon Based Electronics”, Nature Nanotechology, 2 (2007) 605–615.
  29. Javey, A. et al., “High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates”, Nature Mater, 1 (2002) 241–246.
  30. Perri, A. G., Fondamenti di Elettronica, Editor Progedit, Bari, Italy, ISBN:978-88-6194-045-1, (2012).
  31. Marani, R., Perri, A. G., “Study of CNTFETs as Memory Devices”, ECS Journal of Solid State Science and Technology, 11 (2022)
  32. Gelao, G., Marani, R., Perri, A. G., “Study of Power Gain Capability of CNTFET Power Amplifier in THz Frequency Range”, ECS Journal of Solid State Science and Technology, 11 (2022)
  33. Marani, R., Perri, A. G., “Review—Thermal Effects in the Design of CNTFET-Based Digital Circuits”, ECS Journal of Solid State Science and Technology, 11 (2022)
  34. Gelao, G., Marani, R., Perri, A. G., “A Formula to Determine Energy Band Gap in Semiconducting Carbon Nanotubes”, ECS Journal of Solid State Science and Technology, 8 (2019) M19-M21.
  35. Marani, R., Perri, A. G., “Noise effects in the Design of Digital Circuits Based on CNTFET”, ECS Journal of Solid State Science and Technology, 11 (2022)
  36. Marani, R., Perri, A. G., “Noise Effects in the Design of Analog Circuits Based on CNTFET”, ECS Journal of Solid State Science and Technology, 11 (2022)
  37. Marani, R., Perri, A. G., “A Technique, Based on Thevenin Equivalent Method, to Study the Noise Performance of Analog Circuits Involving both CNTFET and MOS Devices”, International Journal of Nanoscience and Nanotechnology, 19 (2023) 9-19.
  38. Marani, R., Perri, A. G., “Editors’ Choice—Effects of Parasitic Elements of Interconnection Lines in CNT Embedded Integrated Circuits”, ECS Journal of Solid State Science and Technology, 9 (2020)
  39. Marani, R., Perri, A. G., “Impact of Technology on CNTFET-Based Circuits Performance”, ECS Journal of Solid State Science and Technology, 9 (2020)
  40. Gelao, G., Marani, R., Perri, A. G., “Analysis of Limits of CNTFET Devices through the Design of a Differential Amplifier”, ECS Journal of Solid State Science and Technology, 10 (2021)
  41. Lee, C-S., Pop, E., Franklin, A.D., Haensch, W., Wong, H.-S. P., “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nmRegime—Part I: Intrinsic Elements”, IEEE Transactions on Electron Devices, 62 (2015) 3061-3069.
  42. Lee, C-S., Pop, E., Franklin, A.D., Haensch, W., Wong, H.-S. P., “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nm Regime—Part II:Extrinsic Elements, Performance Assessment,and Design Optimization”, IEEE Transactions on Electron Devices, 62 (2015) 3070-3078.