A Review of Zinc Oxide (ZnO) ‎Nanostructure Based Humidity Sensor

Document Type : Research Paper

Authors

1 NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, ‎Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2 Centre for Electrical Engineering Studies, Universiti Teknologi MARA (UiTM), Cawangan ‎Johor Kampus Pasir Gudang 81750 Masai, Johor, Malaysia

3 NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, ‎Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Abstract

   Numerous metal oxide nanomaterials, such as titanium dioxide (TiO2), tin oxide (SnO2), and zinc oxide (ZnO), are highly suitable for the fabrication of effective humidity sensors. Comparatively, ZnO is considered as metal oxide with the highest potential due to its unique properties, such as the enormous excitation binding energy of 60 meV, a direct wide bandgap (3.37eV), and the ability to be synthesized and grown at low temperatures. To further enhance the sensing performance of ZnO structure for humidity sensing, parameters such as the morphology and crystallinity of the ZnO structure can be optimized through control of synthesis conditions, such as precursor concentration, reaction time, temperature, and pH. Although various fabrication and characterization of ZnO nanostructures composited with other metal oxides have been published, there are insufficient investigations that highlight the performance of humidity sensors using ZnO alone. Therefore, this study provides a comprehensive analysis of the application of ZnO nanostructure in developing humidity sensors. The discussion in this review includes a summary of the recent development of humidity sensors and the parameters used to measure their sensing performances such as doping and compounding method. The study also highlighted the unique features of ZnO and the numerous methods used to synthesis ZnO, including sol-gel immersion, two-step solution, hydrothermal synthesis, and spin-coating process. In short, the intriguing development of ZnO-based humidity sensors would offer an alternative option to employ effective humidity-sensing devices in thin-film solar cells and ultraviolet (UV)-based applications.

Keywords

Main Subjects


  1. Li, F., Peng L., Hongyan Z., “Preparation and Research of a High-Performance ZnO/SnO2 Humidity Sensor”, Sensors, 22 (2022) 293. doi: 10.3390/ s22010293
  2. Xie, X., Si, R., Zheng, J., Wei, K., Zheng, X., Chen, C., Wang, C., “Synthesis of ZnO/NiO hollow spheres and their humidity sensing performance”, Alloys Compd., 879 (2021) 160487. doi: 10.1016/j.jallcom.2021.160487
  3. Li, H., Meng, B., Jia, H., Wang, D., Wei, Z., Li, R., Chen, R.,“Optical Humidity Sensor Based on ZnO Nanomaterials,” 2020 5th Optoelectron. Glob. Conf. OGC 2020, (2020) 169–172. doi: 10.1109/OGC50007.2020.9260472
  4. Arularasu, M. V., Harb, M., Vignesh, R., Rajendran, T. V., Sundaram, R., “7PVDF/ZnO hybrid nanocomposite applied as a resistive humidity sensor”, Surfaces and Interfaces, (2020) 100780, .doi: 10.1016/j.surfin.2020.100780
  5. A Subki, A. S. R., Mamat, M. H., Zahidi, M. M., Abdullah, M. H., Banu, I. B. S., Vasimalai, N., Ahmad, M. K., Nayan, N., Bakar, S., A., Mohamed, A., Birowosuto, M, D., “Optimisation of Aluminum Dopant Amalgamation Immersion Time on Structural, Electrical, and Humidity-Sensing Attributes of Pristine ZnO for Flexible Humidity Sensor Application”, Chemosensors, 10 (2022) 489. doi: 10.3390/chemosensors10110489
  6. Ismail, A. S., Mamat, M. H., Malek, M. F., Yusoff, M. M., Mohamed, R., Sin, N. D.Md, Suriani, A. B., Rusop, M., “Heterogeneous SnO2/ZnO nanoparticulate film: Facile synthesis and humidity sensing capability”, Sci. Semicond. Process, 81 (2018) 127–138. doi: 10.1016/j.mssp.2018.03.022
  7. Dubey, C., Kumar, B., “Organic Humidity Sensors with Different Materials and Its Application in Environment Monitoring”, 2018 5th IEEE Uttar Pradesh Sect. Int. Conf. Electr. Electron. Comput. Eng. UPCON 2018, (2018) 1–6. doi: 10.1109/UPCON.2018.8597009
  8. Gu, Y., Ye, Z., Sun, N., Kuang, X., Liu, W., Song, X., Zhang, L., Bai, W., Tang, X., “Preparation and properties of humidity sensor based on K-doped ZnO nanostructure”, Mater. Sci. Mater. Electron., 30 (2019) 18767–18779. doi: 10.1007/s10854-019-02230-y
  9. Niu, L., Hong, S., Wang, M. H.,“Properties of ZnO with Oxygen Vacancies and Its Application in Humidity Sensor”, Electron. Mater., 50 (2021) 4480–4487. doi: 10.1007/s11664-021-08966-w
  10. Chou, C., Shih, Li., Chang, S., “The study of humidity sensor based on Li-doped ZnO nanorods by hydrothermal method”, Technol., 9 (2020). doi: 10.1007/s00542-020-04957-9
  11. Ismail, A. S., Mamat, M. H., Shameem Banu, I. B., Amiruddin, R., Malek, M. F., Parimon, N., Zoolfakar, A. S., Md. Sin, N. D., Suriani, A. B., Ahmad, M. K., Rusop, M., “Structural modification of ZnO nanorod array through Fe-doping: Ramification on UV and humidity sensing properties”, Nano-Structures and Nano-Objects, 18 (2019) 100262. doi: 10.1016/j.nanoso.2019.100262
  12. Ismail, A. S., Mamat, M. H., Malek, M. F., Abdullah, M. A.R., Ahmad, W. R.W., Yusoff, M. M., Mohamed, R., Md Sin, N. D., Suriani, A. B., Rusop, M., “UV photoresponsivity of sol-gel derived Al-doped ZnO nanorod array”, AIP Conf. Proc., 2151 (2019), doi: 10.1063/1.5124637
  13. Saidi, S. A., Mamat, M. H., Ismail, A. S., Malek, M. F., Yusoff, M. M., Sin, N. D. Md., Zoolfakar, A. S., Khusaimi, Z., Rusop, M., “Humidity sensing properties of Al-doped zinc oxide coating films”, AIP Conf. Proc., 1963 (2018). doi: 10.1063/1.5036863
  14. Üzar, N., Algün, G., Akçay, N., Akcan, D., Arda, L., “Structural, optical, electrical and humudity sensing properties of (Y/Al) co-doped ZnO thin films”, Mater. Sci. Mater. Electron., 28 (2017) 11861–11870,. doi: 10.1007/s10854-017-6994-3
  15. Algün, G., Akçay, N., “Enhanced sensing characteristics of relative humidity sensors based on Al and F co-doped ZnO nanostructured thin films”, Mater. Sci. Mater. Electron., 30 (2019) 16124–16134. doi: 10.1007/s10854-019-01982-x
  16. Rao, X., Zhao, L., Xu, L., Wang, Y., Liu, K., Wang, Y., Chen, George Y., Liu, T., Wang, Y., “Review of Optical Humidity Sensors”, Sensors, 21 (2021) 8049. doi: 10.3390/s21238049
  17. Peng, Li., Shuguo Y., Hongyan Z., “Preparation and Performance Analysis of Ag/ZnO Humidity Sensor”, Sensors, 21 (2021) 857. doi: 10.3390/ s21030857
  18. Morsy, M., Ibrahim, M., Yuan, Z., Meng, F., “Graphene foam decorated with ZnO as a humidity sensor”, IEEE Sens. J., (2019) 1. doi: 10.1109/JSEN.2019.2948983
  19. Ahmad, W. R.W., Mamat, M. H., Khusaimi, Z., Ismail, A. S., Rusop, M., “Impact of annealing temperature to the performance of hematite-based humidity sensor”, J. Electr. Eng. Comput. Sci., 13 (2019)1079–1086. doi: 10.11591/ijeecs.v13.i3.pp1079-1086
  20. Narasimman, S., Dinesh, U., Balakrishnan, L., Meher, S. R., Sivacoumar, R., Alex, Z. C., “A comparative study on structural, optical and humidity sensing characteristics of ZnO, SnO2 and ZnO:SnO2 nanocomposite”, Lett., 15 (2017) 440–447. doi: 10.1166/sl.2017.3828
  21. Hafiz, M., Rafis, H., Rahim, A., Johari, A., Dimyati, K., Wadi, S., “Optik Humidity sensing using microfiber-ZnO nanorods coated glass structure”, Optik (Stuttg)., 238 (2021) 166715. doi: 10.1016/j.ijleo.2021.166715
  22. Ismail, A. S.,Mamat, M. H., Mahmood, M. R., “Aluminum- and Iron-Doped Zinc Oxide Nanorod Arrays for Humidity Sensor Applications”, Nanostructured Mater. (2017). doi: 10.5772/67661
  23. Grozovski, V., Vesztergom, S., Láng, G. G., Broekmann, P., “ Electrochemical Hydrogen Evolution: H + or H 2 O Reduction? A Rotating Disk Electrode Study”, Electrochem. Soc., 164 (2017) E3171–E3178. doi: 10.1149/2.0191711jes
  24. Velumani, M., Meher, S. R., Alex, Z. C., “Impedometric humidity sensing characteristics of ­ SnO 2 thin films and ­ SnO 2 – ZnO composite thin films grown by magnetron sputtering”, Mater. Sci. Mater. Electron., (2017). doi: 10.1007/s10854-017-8342-z
  25. Ismail, A. S., Mamat, M. H., Yusoff, M. M., Malek, M. F., Zoolfakar, A. S., Rani, R. A., Suriani, A. B., Mohamed, A., Ahmad, M. K., Rusop, M., “Enhanced humidity sensing performance using Sn-Doped ZnO nanorod Array/SnO2 nanowire heteronetwork fabricated via two-step solution immersion”, Lett., 210 (2018) 258–262. doi: 10.1016/j.matlet.2017.09.040
  26. Young, S., Lai, L. T., “Investigation of a Highly Sensitive Au”, IEEE TRANSACTIONS ON ELECTRON DEVICES, 68 (2021) 775–77. doi: 10.1109/TED.2020.3044023
  27. Kadem, B., Adnan, H., Hassan, A., “ScienceDirect Modification of morphological and optical properties of ZnO thin film”, Karbala Int. J. Mod. Sci., 3 (2017 )103–110. doi: 10.1016/j.kijoms.2017.04.003
  28. Xu, Z., Li, Z., “Design and Fabrication of ZnO-Based SAW Sensor Using Low Power Homo-Buffer Layer for Enhanced Humidity Sensing”, IEEE Sens. J., 21 (2021) 7428–7433. doi: 10.1109/JSEN.2021.3049350
  29. Morsy, M., Ibrahim, M., Yuan, Z., Meng, F., “Graphene foam decorated with ZnO as a humidity sensor”, IEEE Sens. J., (2019) 1.doi: 10.1109/JSEN.2019.2948983
  30. Ismail, A. S., Mamat, M. H., Shameem Banu, I. B., Malek, M. F., Yusoff, M. M., Mohamed, R., Ahmad, W. R.W., Abdullah, M. A.R., Md. Sin, N. D., Suriani, A. B., Ahmad, M. K., Rusop, M., “Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties”, Mater. Sci. Mater. Electron., 29 (2018) 12076–12088. doi: 10.1007/s10854-018-9314-7
  31. Singh, V., Hojamberdiev, M., Kumar, M., “Enhanced sensing performance of ZnO nanostructures-based gas sensors : A review”, Energy Reports, (2019) doi: 10.1016/j.egyr.2019.08.070
  32. Kim, B. C., Gupta, A. A., “A Reliable Device Topology for ZnO Nanowire-based Gas Sensors”, Madridge J Nanotechnol Nanosci,  4 (2019) 148–153. doi: 10.18689/mjnn-1000129
  33. Hafiz, M., Rafis, H., Rahim, A., Johari, A., Ahmad, A., Thokchom, S., Dimyati, K., Wadi, S., “Integrating microsphere resonator and ZnO nanorods coated glass for humidity sensing application”, Laser Technol., 143 (2021) 107356. doi: 10.1016/j.optlastec.2021.107356
  34. Harith, Z., Batumalay, M., Irawati, N., Wadi, S., “ZnO nanorod-coated tapered plastic fiber sensors for relative humidity”, Commun., 473 (2020) 125924. doi: 10.1016/j.optcom.2020.125924
  35. Harith, Z., Batumalay, M., Irawati, N., Harun, S. W., Arof, H., Ahmad, H., “Relative humidity sensor employing tapered Plastic Optical Fiber coated with seeded Al-Doped ZnO”, - Int. J. Light Electron Opt., (2017). doi: 10.1016/j.ijleo.2017.06.123
  36. Yu, S., Zhang, H., Chen, C., Lin, C., “Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle”, Sensors Actuators, B Chem., vol. 287, no. October 2018, (2019) 526–534. doi: 10.1016/j.snb.2019.02.089
  37. Najeeb, M. A., Ahmad, , Shakoor, R. A., “Organic Thin-Film Capacitive and Resistive Humidity Sensors : A Focus Review”, Advance Material, 1800969 (2018) 1–19. doi: 10.1002/admi.201800969
  38. Anuradha Y., “Classification and Applications of Humidity Sensors : A Review”, International Journal for Research in Applied Science & Engineering Technology (IJRASET), 6 (2018). doi: 10.22214/ijraset.2018.4616
  39. Yu, S., Zhang, H., Zhang, J., Li, Z., “Effects of pH on High-Performance ZnO Resistive”, Sensors, 19 ( 2019) 5267. doi:10.3390/s19235267
  40. Saidi, S. A., Mamat, M. H., Ismail, A. S., Malek, M. F., Yusoff, M. M., Sin, N. D. Md., Zoolfakar, A. S., Khusaimi, Z., Rusop, M., “Surface Topology and Optical Properties of Nanostructured Zinc Oxide Thin Films Prepared Using Two-Stage Solution Immersion Method Surface Topology and Optical Properties of Nanostructured Zinc Oxide Thin Films Prepared Using Two-Stage Solution Immersion”, IOP Conf. Series: Materials Science and Engineering, 340 (2018) 012011. doi: 10.1088/1757-899X/340/1/012011
  41. Y., Zhang, H., “Research on the preparation and growth mechanism of ZnO micro/nano nails”, OPTOELECTRONICS LETTERS, 14 (2018) 2–5. doi: 10.1007/s11801-018-8016-y
  42. Choudhari and S. Jagtap, “Hydrothermally Synthesised ZnSe Nanoparticles for Relative Humidity Sensing Application”, Journal of Electronic Materials, 49 (2020) 5903–5916. doi: 10.1007/s11664-020-08320-6
  43. Niu, H., Yue, W., Li, Y., Yin, F., Gao, S., “Sensors and Actuators : B. Chemical Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring”, Sensors Actuators B. Chem., 334, (2021) 129637. doi: 10.1016/j.snb.2021.129637
  44. Lv, C., Hu, C., Luo, J., Liu, S., Qiao, Y., Zhang, Z., Song, J., “Recent Advances in Graphene-Based Humidity Sensors”, Nanomaterials, 9 (2019) 422. doi: 10.3390/nano9030422
  45. Kapic, A., Tsirou, A., Verdini, P. G., Carrara, S., “Humidity Sensors for High Energy Physics Applications : A Review”,IEEE SENSORS JOURNAL, (2020). doi: 10.1109/JSEN.2020.2994315
  46. Duan, Z., Zhao, Q., Wang, S., Yuan, Z., Zhang, Y., Li, X., Wu, Y., Jiang, Y., Tai, H., “Sensors and Actuators B : Chemical Novel application of attapulgite on high performance and low-cost humidity sensors”, Sensors Actuators B. Chem., 305 (2020) 127534. doi: 10.1016/j.snb.2019.127534
  47. Jali, M. H., Rafis, H., Rahim, A., Johari, A., Thokchom, S., Harun, S. W., “The sensor employs the dispersion of evanescent wave Sensitivity increases with the ZnO coating Glass surface was grown with ZnO nanorods using hydrothermal method”, Sensors Actuators A. Phys., (2018). doi: 10.1016/j.sna.2018.05.003
  48. Patil, Y. H., Ghosh, A., “Optical Fiber Humidity Sensors : A Review”, 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI), (2020) 207–213. doi: 10.1109/ICOEI48184.2020.9142997
  49. Ji, H., Zeng, W., “Gas sensing mechanisms of metal oxide semiconductors : a focus review”, Nanoscale, 11 (2019) 22664–22684. doi: 10.1039/c9nr07699a
  50. Ismail, A. S., Mamat, M. H., Malek, M. F., Yusoff, M. M., Mohamed, R., Sin, N. D.Md, Suriani, A. B., Rusop, M., “Effect of NaOH Concentration to the Growth of ZnO Nanorod Arrays”, International Journal Of Electrical And Electronic Systems Research, (2018). Url: https://ir.uitm.edu.my/id/eprint/63112/1/63112.pdf
  51. Nahhas, A. M., “Recent Advances of ZnO Based Nanowires and Nanorods Devices”,American Journal of Nanomaterials, 6 (2019) 15-23.  doi: 10.12691/ajn-6-1-2
  52. Ameer, A. A., Suriani A. B., Jabur, A. R., Hashim, N.,  Fatiatun, Zaid, K., “The fabrication of zinc oxide nanorods and nanowires by solgel immersion methods The fabrication of zinc oxide nanorods and nanowires by sol- gel immersion methods”, Journal of Physics: Conference Series, 1170 (2019) 012005 doi: 10.1088/1742-6596/1170/1/012005.