Screening Assessment of the Potential ‎Hazard of Nanomaterials using a Bull ‎Sperm

Document Type : Research Paper


1 Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine

2 State Institution «Kundiiev Institute of Occupational Health of the National Academy of ‎Medical Sciences of Ukraine», Kyiv, Ukraine

3 Bogomolets National Medical University, Kyiv, Ukraine

4 Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan


   This paper studied a potential hazard of titanium dioxide nanomaterials in the primary sreening methods on the sample of bull sperm. A method for stabilizing metal nanopowders and their derivatives for biomedical studies is proposed. It was found that the complex of titanium dioxide doped with silver (Ag-TiO2) and nanopowder of titanium dioxide (TiO2) at concentrations of 3 mg/ml initiate pathological changes in the bull sperm: the release of phospholipids as a result of the destruction of membranes and morphological abnormalities (abnormalities of the head, middle part, and tail, as well as the absence of acrosome, etc). The pathological effect of Ag-TiO2 nanocomposite was more pronounced. Doping with silver can increase the toxicity of nanotitanium dioxide, which requires further in-depth experimental studies using different concentrations by in vivo and in vitro methods.


Main Subjects

  1. Shakeel, M., Jabeen, F., Shabbir, S., Asghar, M. S., Khan, M. S., Chaudhry A. S., “Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review”, Trace. Elem. Res., 172(1) (2016) 1-36.
  2. Arjomandi Rad, F., Talat Mehrabad, J., “Structural and Optical Properties Study of Ag and Mg co-Doped TiO2 by Comparison between DFT Calculation with Experimental Results”, International Journal of Nanoscience and Nanotechnology, 19(1) (2023) 43-50.
  3. Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., Glowacka-Sobotta, A., Stanisz, B., Goslinski, T., Sobotta, L., “Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine”, Nanomaterials (Basel), 10(2) (2020) 387-391.
  4. Ama, O. M., Khoele, K., Ray, S. S., “TiO2/Ag2O-Exfoliated Graphite as Visible ‎Light-Responsive Nanostructure for ‎Improved Photoelectrochemical ‎Degradation of BPA”, International Journal of Nanoscience and Nanotechnology, 17(1) (2021) 1-10.
  5. Warheit, D. B., “Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years?”, , 7 (2018) 376.
  6. Savage, D. T., Hilt, J. Z., Dziubla, T. D., “In Vitro Methods for Assessing Nanoparticle Toxicity”, Methods Mol. Biol., 1894 (2019) 1-29.
  7. Joris, F., Manshian, B. B., Peynshaert, K., De Smedt, S. C., Braeckmans, K., Soenen, S. J., “Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro-in vivo gap”, Soc. Rev., 42(21) (210) 8339-8359. 
  8. Endes, C., Schmid, O., Kinnear, C., Mueller, S., Camarero-Espinosa, S., Vanhecke, D., Foster, E. J., Petri-Fink, A., Rothen-Rutishauser, B., Weder, C., Clift, M. J., “An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles”, Part Fibre Toxicol., 11(40) (2014) 1-12.
  9. Guadagnini, R., Halamoda, B., Kenzaoui B., Walker, L., Pojana, G., Magdolenova, Z., Bilanicova, D., Boland, S., “Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests”, Nanotoxicology, 1 (2015) 13-24.
  10. Horie, M., Tabei, Y., “Role of oxidative stress in nanoparticles toxicity”, Free Radic. Res., 18 (2020) 1-12.
  11. Wu, W. T., Jung, W. T., Lee, H. L., “Lipid peroxidation metabolites associated with biomarkers of inflammation and oxidation stress in workers handling carbon nanotubes and metal oxide nanoparticles”, Nanotoxicology, 15(5) (2021) 577-587.
  12. Ayala, A., Muñoz, M. F., Argüelles, S., “Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal”, Oxid Med. Cell Longev., 5 (2014) 1-31.
  13. Gaschler, M. M., Stockwell, B. R., “Lipid peroxidation in cell death”, Biophys. Res. Commun., 482(3) (2017) 419-425.
  14. Palacin, I., Santolaria, Р., Alquezar-Baeta, С., Soler, С., Silvestre, M., Yániz, Y., “Relationship of sperm plasma membrane and acrosomal integrities with sperm morphometry in Bos taurus”,  Asian journal of andrology, 22(6) (2020) 578-582.
  15. Alahmar, A.T., “Role of Oxidative Stress in Male Infertility: An Updated Review”, Hum. Reprod. Sci., 12(1) (2019) 4-18.
  16. Mustafa, M., Dar, S. A., Azmi, S., Haque, S., “The Role of Environmental Toxicant-Induced Oxidative Stress in Male Infertility”, Exp. Med. Biol., 1391 (2022) 17-32.
  17. Agarwal, A., Virk, G., Ong, C., du Plessis, S. S., “Effect of oxidative stress on male reproduction”, World J. Mens Health, 32(1) (2014) 1-17. 
  18. Hosseinzadeh, C. A., Karimi, F., Jorsaraei, S. G., “Correlation of sperm parameters with semen lipid peroxidation and total antioxidants levels in astheno- and oligoceno-teratospermia men”, Iran Red. Crescent Med. J., 15(9) (2013) 780-785.

19.    Pawar, K., Kaul, G., “Toxicity of titanium oxide nanoparticles causes functionality and DNA damage in buffalo (Bubalus bubalis) sperm in vitro, Toxicology and Industrial Health, 30(6) (2014) 520-533.

  1. Taurozzi, J. S., Hackley, V. A., “Preparation of Nanoparticle Dispersions from Powdered Material Using Ultrasonic Disruption”, National Institute of Standards and Technology Special Publication, 1200(2) (2012) 1-14.
  2. Viana, M. M., Soares, V. F., Mohallem, N. D. S.,“Synthesis and characterization of TiO2 nanoparticles”, Ceramics International, 36(7) (2010) 2047-2053.
  3. Folch, J., Lees, М., “A simple method for the isolation and purification of total lipids from animal tissues”, Biol. Chem., 226(1) (1957) 497-509.
  4. Sehr, G., “Improvement in the first-insemination rate after insemination with bull sperm frozen in pellet form and the use of a sodium citrate-glucose solution for thawing. Short report from the practice”, Dtsch Tierarztl Wochenschr., 82(11) (1975) 441-442.
  5. Banaszewska, D., Andraszek, K., Czubaszek, M., Biesiada-Drzazga, B., “The effect of selected staining techniques on bull sperm morphometry”, Reprod. Sci., 8 (2015) 17-24. 
  6. Jung, J. W, Koch, G. G. “Multivariate non-parametric methods for Mann-Whitney statistics to analyze cross-over studies with two treatment sequences”, Med., 18(8) (1999) 989-1017.
  7. Nema, S. P., Dhami, A. J., Kavani, F. S., “Evaluation of egg.yolk-glycerol combination in Tris, citrate and phosphate extenders for freezing of ram semen”, Indian Journal of Animal Reproduction, 32(1) (2011) 20-23.
  8. Demetska, O. V., Movchan, V. O., Beliuha, O. G., Didenko, M. M. , Balia, A. G., Andrusyshyna, I. M., “Approaches to express potential hazard assessment of nanosized fractions of welding fumes”, Ukrainian Journal of Occupational Health, 18(2) (2022) 130–137.
  9. Lu, N., Zhu, Z., Zhao, X., Tao, R., Yang, X., Gao, Z., “Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO2 on skin”, Biophys. Res.Commun., 370(4) (2008) 675-80.
  10. Baranowska-Wójcik, E., Szwajgier, D., Gustaw, K., “Effect of TiO2on Selected Pathogenic and Opportunistic Intestinal Bacteria”, Trace Elem. Res., 200(5) (2022) 2468-2474.
  11. Riabovol, V., Kurchenko, A., Yavorovskyi, A., Savchenko, V., Taran, N. “A study of the influence of photoactive titanium composite nanoparticles of the functional activity of cytokine-producing mononuclear blood cells in vitro”, Immunology and allergology: science and practice, 3 (2021) 23-20.
  12. Ahamed, M., Khan, M. A. M., Akhtar, M. J., Alhadlaq, H. A., Alshamsan, A., “Ag-doping regulates the cytotoxicity of TiO2nanoparticles via oxidative stress in human cancer cells”, Rep., 7(1) (2017) 17662.