A Novel Co-Precipitation Route for the ‎Synthesis of Pure and Ni-Doped CuO ‎Nanoparticles: Effect of Doping on ‎Structural, Optical, and Electrical ‎Properties ‎

Document Type : Research Paper

Authors

1 Hevesy György PhD School of Chemistry, Eötvös Loránd University, ‎Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary

2 School of Science, J S University, Shikohabad, India

Abstract

   A novel route for the synthesis of pure and nickel (Ni) doped copper oxide (CuO) nanoparticles via a simple co-precipitation process has been presented. The effect of the concentration of the dopant Ni (0, 2, and 4 mol %) on its properties has been carefully investigated. It has been reported that Ni doping is successfully achieved through the synthesis route. The structure and morphology were analyzed by using X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. X-ray diffraction analysis proved that prepared nanoparticles are highly pure and crystalline having a monoclinic structure and the crystallite size increases (13 nm to 17 nm) with Ni doping. Fourier transform infrared spectrum show successful Ni doping in the CuO system. Optical properties were investigated using UV-vis spectroscopy and the calculated band gap energies are 4.64 and 4.71 eV for pure and doped CuO, respectively. Electrical properties (dielectric constant ( ), dielectric loss (tan δ), and AC conductivity ( ) were studied using room temperature impedance spectroscopy. Energy dispersive X-ray spectrum of undoped and Ni-doped CuO to confirm the prepared sample composition has also been presented and discussed.

Keywords

Main Subjects


  1. Ansari, M. A., “Modelling of size-dependent thermodynamic properties of metallic nanocrystals based on modified Gibbs–Thomson equation”, Applied Physics A, 127(5) (2021) 1-11.
  2. Velayudhan Nair Girija, V., Vasu, S., “Synthesis and characterization of iron oxide nanoparticles by thermal decomposition method of iron (III) chelates”, International Journal of Nanoscience and Nanotechnology, 15(1) (2019) 65-73.
  3. Saravanan, S., Sivanandan, T., Ramalingam, G.,“Optical, Thermal and Magnetic Properties‎ of Strontium Ferrite Nanoparticles”,International Journal of Nanoscience and Nanotechnology, 18(4) (2022) 275-284.
  4. Somdee, P., Ansari, M. A., Marossy, K.,“Thermo‐mechanical properties of flexible and rigid polyurethane (PU)/Cu composites”,Polymer Composites, 44(1) (2023) 401-412.
  5. Sahu, K., Satpati, B., Mohapatra, S., “Facile fabrication of CuO nanosheets for photocatalytic applications”, Applied Physics A, 127(5) (2021) 1-9.
  6. Pirzad Ghias Abadi, S., Borhani Zarandi, M., Jahanbakhshi Zadeh, N., “Synthesis of NiO Nanoparticles: Effect of Method on Structural Properties of NiO Nanoparticles”,International Journal of Nanoscience and Nanotechnology, 18(3) (2022) 187-195.
  7. Devasia, J., Muniswamy, B., Mishra, M. K., “Investigation of ZnO Nanoparticles on In‎ Vitro Cultures of Coffee (Coffea Arabica‎)‎”, International Journal of Nanoscience and Nanotechnology, 16(4) (2020) 271-277.
  8. Chandra Sekhar, D., Diwakar, B. S., Madhavi, N., “Silica Coated Magnetic Nanoparticles for‎ Biological Applications International Journal of Nanoscience and Nanotechnology”, 16(4) (2020) 209-217.
  9. Ansari, M. A., Somdee, P., Marossy, K., “Synthesis of cross-linked polyurethane elastomers with the inclusion of polar-aromatic moieties (BA, PNBA and 3, 5-DNBA): Electrical and thermo- mechanical properties analysis”, Journal of Polymer Research, 28(5) (2021) 1-11.
  10. Hamzehzad, S., Keshipour, S., “TiO2/hydrophobic Cellulose Aerogel Nanocomposite as a New Photocatalyst for Oxidation of Alcohols and Ethylbenzene”,International Journal of Nanoscience and Nanotechnology, 17(4) (2021) 231-238.
  11. Peiravi, M. M., Ashabi, A., “Magneto Effects on Fe3O4 Nanoparticles‎ through the Triangular and Rectangular‎ Baffles on Thread Stretching Surface for‎ Rotary Seals in Computer Hardware”,International Journal of Nanoscience and Nanotechnology, 18(2) (2022) 143-156.
  12. Soundararajan, S. P., Murugan, M., Mohanraj, K., Devendhiran, T., Balachandran, S., Balraj, B., Ho, M. S., “Characterization of CuO thin films and its Al/p-CuO/n-Si Schottky diodes fabricated via JNS pyrolysis technique”, Journal of Advanced Physics, 7(2) (2018) 183-189.
  13. Katti, V. R., Debnath, A. K., Muthe, K. P., Kaur, M., Dua, A. K., Gadkari, S. C., Sahni, V. C., “Mechanism of drifts in H2S sensing properties of SnO2: CuO composite thin film sensors prepared by thermal evaporation”, Sensors and Actuators B: Chemical, 96(1-2) (2003) 245-252.
  14. She, Y., Zheng, Q., Li, L., Zhan, Y., Chen, C., Zheng, Y., Lin, X., “Rare earth oxide modified CuO/CeO2 catalysts for the water–gas shift reaction”, international journal of hydrogen energy, 34(21) (2009) 8929-8936.
  15. Zheng, X. G., Xu, C. N., Tomokiyo, Y., Tanaka, E., Yamada, H., Soejima, Y., “Observation of charge stripes in cupric oxide”, Physical Review Letters, 85(24) (2000) 5170.
  16. Lakshmanan, S. P., Jostar, S. T., Arputhavalli, G. J., Jebasingh, S., Josephine, C. M. R., “Role of Green Synthesized CuO‎ Nanoparticles of Trigonella Foenum-‎ Graecum L. Leaves and their Impact on‎ Structural, Optical and Antimicrobial‎ Activity‎”, International Journal of Nanoscience and Nanotechnology, 17(2) (2021) 109-121.
  17. Anu, Thakur, N., Kumar, K., Sharma, K. K., “Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria”, Inorganic and Nano-Metal Chemistry, 50(10) (2020) 933-943.
  18. Yousef, A., Barakat, N. A., Amna, T., Al-Deyab, S. S., Hassan, M. S., Abdel-Hay, A., Kim, H. Y., “Inactivation of   pathogenic   Klebsiella   pneumoniae   by   CuO/TiO2   nanofibers:   A multifunctional nanomaterial via one-step electrospinning”, Ceramics International, 38(6) (2012) 4525-4532.
  19. Thakur, N., Kumar, K., “Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method”,Journal of Environmental Chemical Engineering, 8(4) (2020) 104011.
  20. Attiya, H. G., Fendi, W. J., Al-Dulaimy, Z. A., Farooq, A., Mohammed, A. M., “Characterization Synthesis Of Copper Oxide. Nanoparticles Application. A Review”,Journal of Pharmaceutical Negative Results, (2023) 250-256.
  21. Thongbai, P., Yamwong, T., Maensiri, S., “Correlation between giant dielectric response and electrical conductivity of CuO ceramic”, Solid state communications, 147(9-10) (2008) 385-387.
  22. Ansari, M. A., Somdee, P., “Piezoelectric Polymeric Foams as Flexible Energy Harvesters: A Review”,Advanced Energy and Sustainability Research, 3(9) (2022) 2200063..
  23. Oruç, Ç., Altındal, A., “Structural and dielectric properties of CuO nanoparticles”, Ceramics International, 43(14) (2017) 10708-10714.
  24. Mallick, P., Sahu, S., “Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by sol-gel route”, Nanoscience and Nanotechnology, 2(3) (2012) 71-74.
  25. Xiang, Q., Yu, J., Wang, W., Jaroniec, M., “Nitrogen self-doped nanosized TiO 2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity”, Chemical Communications, 47(24) (2011) 6906-6908.
  26. Li, D., Leung, Y. H., Djurišić, A. B., Liu, Z. T., Xie, M. H., Gao, J., Chan, W. K., “CuO nanostructures prepared by a chemical method”, Journal of crystal growth, 282(1-2) (2005) 105-111.
  27. Faisal, M., Khan, S. B., Rahman, M. M., Jamal, A., Umar, A., “Ethanol chemi-sensor: Evaluation of structural, optical and sensing properties of CuO nanosheets”, Materials Letters, 65(9) (2011) 1400-1403.
  28. Salavati-Niasari, M., Davar, F., “Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor”, Materials Letters, 63(3-4) (2009) 441-443.
  29. Vijaya Kumar, R., Elgamiel, R., Diamant, Y., Gedanken, A., Norwig, J., “Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly (vinyl alcohol) and its effect on crystal growth of copper oxide”, Langmuir, 17(5) (2001) 1406-1410.
  30. Wang, H., Xu, J. Z., Zhu, J. J., Chen, H. Y., “Preparation of CuO nanoparticles by microwave irradiation”, Journal of crystal growth, 244(1) (2002) 88-94.
  31. Ansari, M. A., Jahan, N., “Structural and Optical Properties of BaO Nanoparticles Synthesized by Facile Co-precipitation Method”, Materials Highlights, 2(1-2) (2021) 23-28.
  32. Wu, R., Ma, Z., Gu, Z., Yang, Y., “Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC–water mixed solvent”, Journal of Alloys and Compounds, 504(1) (2010) 45-49.
  33. Joseph, D. P., Venkateswaran, C., Sambasivam, S., Choi, B. C., “Effect of Fe alloying on the structural, optical, electrical and magnetic properties of spray-deposited CuO thin films”, Journal of the Korean Physical Society, 61(3) (2012) 449-454.
  34. Thakur, N., Kumar, K., Thakur, V. K., Soni, S., Kumar, A., Samant, S. S., “Antibacterial and photocatalytic activity of undoped and (Ag, Fe) co-doped CuO nanoparticles via microwave-assisted method”,Nanofabrication, 7 (2022) 62-88.
  35. Manna, S., De, S. K., “Room temperature ferromagnetism in Fe doped CuO nanorods”, Journal of magnetism and magnetic materials, 322(18) (2010) 2749-2753.
  36. Meneses, C. T., Duque, J. G. S., Vivas, L. G., Knobel, M., “Synthesis and characterization of TM-doped CuO (TM= Fe, Ni)”, Journal of Non-Crystalline Solids, 354(42-44) (2008) 4830-4832.
  37. Rao, G. N., Yao, Y. D., Chen, J. W., “Influence of Mn substitution on microstructure and magnetic properties of Cu 1− x Mn x O nanoparticles”, Journal of applied physics, 101(9) (2007) 09H119.
  38. Gülen, Y., Bayansal, F., Şahin, B., Cetinkara, H. A., Güder, H. S., “Fabrication and characterization of Mn-doped CuO thin films by the SILAR method”, Ceramics International, 39(6) (2013) 6475-6480.
  39. Thakur, N., Kumar, K., Kumar, A., “Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method”,Dalton Transactions, 50(18) (2021) 6188-6203.
  40. Basith, N. M., Vijaya, J. J., Kennedy, L. J., Bououdina, M., “Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method”, Materials science in semiconductor processing, 17 (2014) 110-118
  41. Al-Amri, S., Shahnawaze A, M., Rafique, S., Aldhahri, M., Rahimuddin, S., Azam, A., Memic, A., “Ni doped CuO nanoparticles: structural and optical characterizations”, Current Nanoscience, 11(2) (2015) 191-197.
  42. Lakshmi, K., Kadirvelu, K., Mohan, P. S., “Catalytic reduction of hazardous compound (Triethylphosphate) using Ni doped CuO nanoparticles”, Defence Life Science Journal, (2) (2017) 4.
  43. Thangamani, C., Ponnar, M., Priyadharshini, P., Monisha, P., Gomathi, S. S., Pushpanathan, K., “Magnetic behavior of ni-doped cuo nanoparticles synthesized by microwave irradiation method”, Surface Review and Letters, 26(05) (2019) 1850184.
  44. Arunachalam, P., Nagarani, S., Prasad, S., AlSalhi, M. S., Al-Mayouf, A. M., Moydeen, M., Ganapathy, S., “Facile coprecipitation synthesis of nickel doped copper oxide nanocomposite as electrocatalyst for methanol electrooxidation in alkaline solution”, Materials Research Express, 5(1) (2018) 015512.
  45. Brown, I. W. M., Mackenzie, K. J. D., Gainsford, G. J., “Thermal decomposition of the basic copper carbonates malachite and azurite”, Thermochimica acta, 75(1-2) (1984) 23-32.
  46. Karthikeyan, B., “Raman spectral probed electron–phonon coupling and phonon lifetime properties of Ni-doped CuO nanoparticles”, Applied Physics A, 127(3) (2021) 1-7.
  47. Holzwarth, U., Gibson, N., “The Scherrer equation versus the'Debye-Scherrer equation'”, Nature nanotechnology, 6(9) (2011) 534-534.
  48. Ho, W. C. J., Tay, Q., Qi, H., Huang, Z., Li, J., Chen, Z., “Photocatalytic and adsorption performances of faceted cuprous oxide (Cu2O) particles for the removal of methyl orange (MO) from aqueous media”, Molecules, 22(4) (2017) 677.
  49. Zhang, Y.C., Tang, J.Y., Wang, G.L., Zhang, M., Hu, X.Y., “Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor”, Cryst. Growth, 294(2) (2006) 278-282.
  50. Tauc, J., “Optical properties and electronic structure of amorphous semiconductors”, Optical Properties of Solids, (1969) 123-136.
  51. Borgohain, K., Singh, J. B., Rao, M. R., Shripathi, T., Mahamuni, S., “Quantum size effects in CuO nanoparticles”,Physical Review B, 61(16) (2000) 11093.
  52. Son, D. I., You, C. H., Kim, T. W., “Structural, optical, and electronic properties of colloidal CuO nanoparticles formed by using a colloid-thermal synthesis process”, Surf. Sci., 255(21) (2009) 8794-8797.
  53. Chandrasekar, M., Subash, M., Logambal, S., Udhayakumar, G., Uthrakumar, R., Inmozhi, C., Kanimozhi, K. “Synthesis and characterization studies of pure and Ni doped CuO nanoparticles by hydrothermal method”, Journal of King Saud University-Science, (2022) 101831.
  54. Govindaraj, G., “Novel Concept of Non-Debye Dipole Relaxation Processes for the Interpretation of Physical Origin of Dielectric Loss in the Glass Formers, Drugs, Polymers and Plastic Crystals”, arXiv preprint (2016) arXiv:1608.05304.
  55. Sagadevan, S., Priya, M., “Electrical properties of copper oxide nanoparticles”, Journal of Nano Research, 30 (2015) 1-8.