Spray Drying of Asiatic Acid-Palm Oil in Maltodextrin: Improving the Nanoemulsion Characteristics

Document Type : Research Paper

Authors

1 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Parmaceutical Sciences, Chulalongkorn University, P.O.Box 10330, Bangkok, Thailand

2 Department of Pharmaceutics, Faculty of Pharmacy, University of Surabaya, P.O.Box 60293, Surabaya, Indonesia

3 Queen Saovabha Memorial Institute, Thai Red Cross Society, P.O.Box 10330, Bangkok, Thailand

Abstract

   Combination of Asiatic acid (AA) and palm oil (PO) is promising to be developed. However, both have low solubility, low absorption, rapid metabolism, low bioavailability, and high oxidation which need to be improved in order to provide good activity. Thus, nanoemulsion formulation followed by spray drying were optimized to enhance the physical and chemical characteristics of the products. Lecithin (L), poloxamer188 (P), span80 (S), tween80 (T) were used as surfactants to form nanoemulsion and maltodextrin (M) was used as spray dried matrix component. Different amounts of maltodextrin were optimized at low (M1), medium (M2), and high (M3) levels. Characterization and evaluation were carried out on products, including particle size, morphology, product recovery (yield), drug content, solubility, and dissolution rate. The characterization results showed that nanoemulsion was successfully prepared and spray dried microparticles with a good physical form were obtained. The microparticles could be rapidly redispersed to form size of 149.0 – 271.1 nm with the zeta potential value lower than -30mV. Both physical and chemical stability of the microparticles showed no significant difference after 6-month storage. Lecithin-Tween-medium Maltodextrin (LTM2) formula showed the most optimum results with good physical characteristics and a high dissolution rate. In vitro release profile of LTM2 showed area under the curve (AUC) and dissolution efficiency at 180min values of 14725.10 ± 480.60 and 81.81 ± 2.67%, respectively. It could be concluded that spray dried microparticles of AA-PO nanoemulsion formulation improved the physical and chemical characteristics of both compounds presumably suitable good bioavailability and activity.  

Keywords

Main Subjects


  1. Fong, L. Y., Ng, C.T., Yong, Y. K., Hakim, M. N., Ahmad Z., “Asiatic acid stabilizes cytoskeletal proteins and prevents TNF-α-induced disorganization of cell-cell junctions in human aortic endothelial cells”, Vascular Pharmacology., 117 (2019) 15-26. https://doi.org/10.1016/j.vph.2018.08.005
  2. Committee on Herbal Medicinal Products (HMPC). “Assessment report on Centella asiatica (L.) Urban, herba”, (2010). Available from: ema.europa.eu
  3. Meeran, M. F. N., Goyal, S. N., Suchal, K., Sharma, C., Patil, C. R., Ojha, S. K., “Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise”, Frontiers in Pharmacology, 9 (2018). doi:10.3389/fphar.2018.00892
  4. Bayorh, M. A., Abukhalaf, I. K., Ganafa, A. A., “Effect of palm oil on blood pressure, endothelial function and oxidative stress”, Asia Pac J Clin Nutr., 14:4 (2005) 325-339.
  5. Ganafa, A. A., Socci, R. R., Eatman, D., Silvestrov, N., Abukhalaf, I. K., Bayorh, M. A., “Effect of Palm Oil on Oxidative Stress-Induced Hypertension in Sprague-Dawley Rats”, American Journal of Hypertension., 15 (2002) 725-731. Available from: https://academic.oup.com/ajh/article-abstract/15/8/725/143992
  6. Ricaurte, L., Correa, R. E. P., de Jesus Perea-Flores, M., Quintanilla-Carvajal, M. X., “Influence of Milk Whey on High-Oleic Palm Oil Nanoemulsions: Powder Production, Physical and Release Properties”, Food Biophysics., 12:4 (2017) 439-450. doi:10.1007/s11483-017-9500-9
  7. Sandoval-Cuellar, C. E., de Jesus Perea-Flores, M., Quintanilla-Carvajal, M. X., “In-vitro digestion of whey protein- and soy lecithin-stabilized High Oleic Palm Oil emulsions”, Journal of Food Engineering., 278 (2020) 109918. https://doi.org/10.1016/j.jfoodeng.2020.109918
  8. Ricaurte, L., Perea-Flores, M. D. J., Martinez, A., Quintanilla-Carvajal, M. X., “Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization)”, Innovative Food Science and Emerging Technologies., 35 (2016) 75-85. http://dx.doi.org/10.1016/j.ifset.2016.04.004
  9. Nirmala, M. J., Nagarajan, R., “Recent Research Trends in Fabrication and Applications of Plant Essential Oil Based Nanoemulsions”, Journal of Nanomedicine & Nanotechnology., 8 (2017) 434. doi:10.4172/2157-7439.1000434
  10. Jiang, T., Liao, W., Charcosset, C., “Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications”, Food Research International., 132 (2020) 109035. https://doi.org/10.1016/j.foodres.2020.109035
  11. Koroleva, M., Nagovitsina, T., Yurtov, E., “Nanoemulsions stabilized by non-ionic surfactants: Stability and degradation mechanisms”, Physical Chemistry Chemical Physics., 20 (2018) 10369-10377. doi:10.1039/c7cp07626f
  12. Chu, Y., Cheng, W., Feng, X., Gao, C., Wu, D., Meng, L., Zhang, Y., Tang, X., “Fabrication, structure and properties of pullulan-based active films incorporated with ultrasound-assisted cinnamon essential oil nanoemulsions”, Food Packaging and Shelf Life., 25 (2020) 100547. https://doi.org/10.1016/j.fpsl.2020.100547
  13. Gasa-Falcon, A., Arranz, E., Odriozola-Serrano, I., Martín-Belloso, O., Giblin, L., “Delivery of β-carotene to the in vitro intestinal barrier using nanoemulsions with lecithin or sodium caseinate as emulsifiers”, LWT - Food Science and Technology, 135 (2021) 110059. https://doi.org/10.1016/j.lwt.2020.110059
  14. El-Messery, T. M., Altuntas, U., Altin, G., Özçelik, B., “The effect of spray-drying and freeze- drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system”, Food Hydrocolloids., 106 (2020). https://doi.org/10.1016/j.foodhyd.2020.105890
  15. Myat, H. H., Ritthidej, G. C., “Impact of formulation parameters on physical characteristics of spray dried nanoemulsions and their reconstitutions”, Asian Journal of Pharmaceutical Sciences., 11:1 (2016) 197-198. http://dx.doi.org/10.1016/j.ajps.2015.11.038
  16. Dollo, G., le Corre, P., Guérin, A., Chevanne, F., Burgot, J. L., Leverge, R., “Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs”, European Journal of Pharmaceutical Sciences., 19 (2003) 273-280. doi:10.1016 / S0928-0987(03)00134-9
  17. Premi, M., Sharma, H. K., “Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil”, International Journal of Biological Macromolecules., 105 (2017) 1232-1240. http://dx.doi.org/10.1016/j.ijbiomac.2017.07.160
  18. Ribeiro, M. L. F. F., Roos, Y. H., Ribeiro, A. P. B., Nicoletti, V. R., “Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules”, Food and Bioproducts Processing., 124 (2020) 208-221. https://doi.org/10.1016/j.fbp.2020.09.004
  19. Jesser, E., Lorenzetti, A. S., Yeguerman, C., Murray, A. P., Domini, C., Werdin-González, J. O., “Ultrasound assisted formation of essential oil nanoemulsions: Emerging alternative for Culex pipiens pipiens Say (Diptera: Culicidae) and Plodia interpunctella Hübner (Lepidoptera: Pyralidae) management”, Ultrasonics - Sonochemistry., 61 (2020) 104832. https://doi.org/10.1016/j.ultsonch.2019.104832
  20. Páez-Hernández, G., Mondragón-Cortez, P., Espinosa-Andrews, H., “Developing curcumin nanoemulsions by high-intensity methods: Impact of ultrasonication and microfluidization parameters”, LWT - Food Science and Technology, 111 (2019) 291-300. https://doi.org/10.1016/j.lwt.2019.05.012
  21. Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D. S., Al-Maqtari, Q. A., Ma, M., Ahmed, M. I., Wang, H., “Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying”, International Journal of Biological Macromolecules., 152 (2020); 1125-1134. https://doi.org/10.1016/j.ijbiomac.2019.10.201
  22. Carpenter, J., Saharan, V. K., “Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization”, Ultrasonics Sonochemistry., 35 (2017) 422-430. http://dx.doi.org/10.1016/j.ultsonch.2016.10.021
  23. Dordević, S. M., Cekić, N. D., Savić, M. M., Isailović, T. M., Randelović, D. V., Marković, B. D., Savic, S. R., Stamenic, T. T., Daniels, R., Savic, S. D., “Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation”, International Journal of Pharmaceutics., 493 (2015) 40-54. http://dx.doi.org/10.1016/j.ijpharm.2015.07.007
  24. Barick, P., Shalini, B. V., Srinivas, M., Jana, D. C., Saha, B. P., “A facile route for producing spherical granules comprising water reactive aluminium nitride added composite powders”, Advanced Powder Technology., (2020). https://doi.org/10.1016/j.apt.2020.03.009
  25. Matos, R. L., Lu, T., Prosapio, V., McConville, C., Leeke, G., Ingram, A., “Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process”, Journal of CO2 Utilization., 30 (2019) 48-62. https://doi.org/10.1016/j.jcou.2019.01.005
  26. Ren, W., Tian, G., Zhao, S., Yang, Y., Gao, W., Zhao, C., Zhang, H., Lian, Y., Wang, F., Du, H., Xiao, H., Zheng, J., “Effects of spray-drying temperature on the physicochemical properties and polymethoxyflavone loading efficiency of citrus oil microcapsules”, LWT – Food Science and Technology., 133 (2020) 109954. https://doi.org/10.1016/j.lwt.2020.109954
  27. Teo, A., Lam, Y., Lee, S. J., Goh, K. K. T., “Spray drying of whey protein stabilized nanoemulsions containing different wall materials – maltodextrin or trehalose”, LWT – Food Science and Technology., 136 (2021) 110344. https://doi.org/10.1016/j.lwt.2020.110344
  28. United States Pharmacopeial Convention, “USPNF 2021: Dissolution <711>”, Issue 1., (2020). Available from: https://online.uspnf.com/uspnf
  29. You, C., Liang, X., Sun, J., Sun, L., Wang, Y., Fan, T., Zheng, Y., “Blends of hydrophobic and swelling agents in the swelling layer in the preparation of delayed-release pellets of a hydrophilic drug with low MW: Physicochemical characterizations and in-vivo evaluations”, Asian Journal of Pharmaceutical Sciences., 9 (2014) 199–207. http://dx.doi.org/10.1016/j.ajps.2014.06.003
  30. Rachmawati, H., Safitri, D., Pradana, A. T., Adnyana I. K., “TPGS-stabilized curcumin nanoparticles exhibit superior effect on carrageenan-induced inflammation in wistar rat”, Pharmaceutics, 8:24 (2016) 1-13. doi:10.3390/pharmaceutics8030024
  31. Raviadaran, R., Chandran, D., Shin, L. H., Manickam, S., “Optimization of palm oil in water nano-emulsion with curcumin using microfluidizer and response surface methodology”, LWT - Food Science and Technology, 96 (2018) 58-65. https://doi.org/10.1016/j.lwt.2018.05.022
  32. Prabhakar, K., Afzal, S. M., Surender, G., Kishan, V., “Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain”, Acta Pharmaceutica Sinica B., 3:5 (2013) 345-353. http://dx.doi.org/10.1016/j.apsb.2013.08.001
  33. Wang, S., Ye, F., Wei, F., Zhao, G., “Spray-drying of curcumin-loaded octenylsuccinated corn dextrin micelles stabilized with maltodextrin”, Powder Technology, 307 (2017) 56-62. http://dx.doi.org/10.1016/ j.powtec.2016.11.018
  34. Furtado, N. A. J. C., Pirson, L., Edelberg, H., Miranda, L. M., Loira-Pastoriza, C., Preat, V., Larondelle, Y., André, C. M., “Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies”, Molecules., 22:400 (2017) 1-24. doi:10.3390/molecules22030400
  35. Sinko, P.J., Singh, Y., “Martin’s Physical Pharmacy and Pharmaceutical Sciences”, 6th ed, Lippincott Williams & Wilkins, Philadelphia, (2011).
  36. Weiss, M., Fan, J., Claudel, M., Sonntag, T., Didier, P., Ronzani, C., Lebeau, L., Pons, F., “Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential”, Journal of Nanobiotechnology., 19:5 (2021) 1-18. https://doi.org/10.1186/s12951-020-00747-7
  37. Shao, X. R., Wei, X. Q., Song, X., Hao, L. Y., Cai, X. X., Zhang, Z. R., Peng, Q., Lin, Y. F., “Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells”, Cell Proliferation., 48 (2015) 465-474. doi:10.1111/cpr.12192