Design and Fabrication of Enhanced Anti-‎Reflective Properties using ‎Pyramid/Nanowire Texturization of the ‎Silicon Surface ‎

Document Type : Research Paper


1 RF MEMS and Bio-Nano Electronics (MBNE) Lab, Department of Electrical Engineering, ‎Shahid Bahonar University of Kerman, Kerman, Iran ‎

2 Optical and RF Communication Systems (ORCS) Lab, Department of Electrical Engineering, ‎Shahid Bahonar University of Kerman, Kerman 7616914111, Iran‎


   This paper proposes an enhanced anti-reflective surface by applying pyramid/nanowire textures to the silicon wafer. Before texturization, for the first time, we applied a pre-treatment process to the Si wafers using silver assisted chemical etching (MACE) process, which makes the silicon wafer porous. This porosity affects formation of the later synthesized micro pyramids with more uniformity in shape and distribution. For pyramid formation, the etching process of the p-type (100) silicon wafers in the KOH solution with different concentrations of 3, 5, and 7 wt.% along with the isopropyl alcohol is accomplished and surveyed. Micro pyramids are realized with different sizes based on the KOH concentration. In continue, the MACE process with Ag is applied to the pre-formed pyramids to realize the Si nanowires. Therefore, composite texturization of the silicon substrate is achieved. These combined nanowire/pyramid structures significantly reduce the light reflection of the silicon substrate. The acquired reflection factors are less than 3% (<3%). X-ray diffraction (XRD) is utilized to study the synthesized structures' crystalline characteristics which reveals the Si-cubic structure. Moreover, Raman spectroscopy results of the samples are also proposed.


Main Subjects

  1. Amri, C., Ouertani, R., Hamdi, A., Ezzaouia, H., “Effect of Silver-Assisted Chemical Vapor Etching on morphological properties and silicon solar cell performance”, Materials Science in Semiconductor Processing, 63 (2017) 176-183.
  2. Liu, Y., Zi, W., Liu, S. F., Yan, B., “Effective light trapping by hybrid nanostructure for crystalline silicon solar cells”, Solar Energy Materials and Solar Cells, 140 (2015) 180-186.
  3. Fang, H., Li, X., Song, S., Xu, Y., Zhu, J., “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications”, Nanotechnology, 19 (2008) 255703.
  4. Imahori, H., Umeyama, T, Ito, S., “Large p-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells”, Accounts of chemical research, 42 (2009) 1809-1818.
  5. Velez, V. H., Sundaram, K. B., “Area Effect of Reflectance in Silicon‎ Nanowires Grown by Electroless Etching”, International Journal of Nanoscience and Nanotechnology, 13 (2017) 283-288.
  6. Nishijima, Y., Komatsu, R., Ota, S., Seniutinas, G., Balčytis, A., Juodkazis, S., “Anti-reflective surfaces: Cascading nano/microstructuring”, APL Photonics, 1 (2016) 076104.
  7. Zhang, Z. L., Wang, B., Chen, Y., Tang, Y. H., Song, X. M., Li, Q. L., Yan, H., “Preparation of pyramid–SiNWs binary structure with Ag nanoparticles-assisted chemical etching”, Rare Metals, (2015) 1-4.
  8. Sreejith, K. P., Sharma, A. K., Basu, P.K., Kottantharayil, A., “Etching methods for texturing industrial multi-crystalline silicon wafers: A comprehensive review”, Solar Energy Materials and Solar Cells, 238 (2022) 111531.
  9. Balzereit, S., Proes, F., Altstädt, V., Emmelmann, C., “Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers”, Additive Manufacturing, 23 (2018) 347-354.
  10. Spancken, D., van der Straeten, K., Beck, J., Stötzner, N., “Laser Structuring of Metal Surfaces for Hybrid Joints”, Lightweight Design worldwide, 11 (2018) 16-21.
  11. Wang, Q., Zhou, W., “Direct fabrication of cone array microstructure on monocrystalline silicon surface by femtosecond laser texturing”, Optical Materials, 72 (2017) 508-512.
  12. Khadtare, S., Bansode, A. S., Mathe, V. L., Shrestha, N. K., Bathula, C., Han, S. H., Pathan, H. M., “Effect of oxygen plasma treatment on performance of ZnO based dye sensitized solar cells”, Journal of Alloys and Compounds, 724 (2017) 348-352.
  13. Sheikhshoaei, F., Mehran, M., Sheikhshoaei, I., “Effect of Nano-Textured Silicon Substrate on the Synthesize of Metal Oxides Nanostructures “, International Journal of Nanoscience and Nanotechnology, 13 (2017) 265-274.
  14. Omar, K., Salman, K. A., “Effects of Electrochemical Etching Time on the Performance of Porous Silicon Solar Cells on Crystalline n-Type (100) and (111)”, Journal of Nano Research, Trans Tech Publications, (2017) 45-56.
  15. Salman, K. A., “Effect of surface texturing processes on the performance of crystalline silicon solar cell”, Solar Energy, 147 (2017) 228-231.
  16. Yoo, C. Y., Meemongkolkiat, V., Hong, K., Kim, J., Lee, E., Kim, D. S., “Reactive Ion Etching Process Integration on Monocrystalline Silicon Solar Cell for Industrial Production”, Current Photovoltaic Research, 5.4 (2017) 105-108.
  17. Zin, N., “Recombination-free reactive ion etch for high efficiency silicon solar cells”, Solar Energy Materials and Solar Cells, 172 (2017) 55-58.
  18. Kulesza-Matlak, G., Gawlińska, K., Starowicz, Z., Sypień, A., Drabczyk, K., Drabczyk, B., Lipiński, M., Zięba, P., “Black Silicon Obtained in Two-Step Short Wet Etching as a Texture for Silicon Solar Cells–Surface Microstructure and Optical Properties Studies”, Archives of Metallurgy and Materials, 63 (2018).
  19. Salhi, B., Hossain, M. K., Al-Sulaiman, F., “Wet-chemically etched silicon nanowire: Effect of etching parameters on the morphology and optical characterizations”, Solar Energy, 161 (2018.) 180-186.
  20. Yang, C. R., Chen, P. Y., Yang, C. H., Chiou, Y. C., Lee, R. T., “Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions”, Sensors and Actuators A: Physical, 119 (2005) 271-281.
  21. Fellahi, O., Hadjersi, T., Maamache, M., Bouanik, S., Manseri, A., Guerbous, L., “Influence of crystalline damage on morphological and optical properties of silicon nanowires”, Optical Materials, 32 (2010) 768-771.
  22. Zubel, I., Kramkowska, M., “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions”, Sensors and Actuators A: Physical, 93.2 (2001) 138-147.
  23. Silva, A. R., Miyoshi, J., Diniz, J. A., Doi, I., Godoy, J., “The surface texturing of monocrystalline silicon with NH4OH and ion implantation for applications in solar cells compatible with CMOS technology”, Energy Procedia, 44 (2014) 132-137.
  24. Chen, Y., Zhang, C., Li, L., Tuan, C. C., Wu, F., Chen, X., Gao, J., Ding, Y., Wong, C. P., “Fabricating and controlling silicon zigzag nanowires by diffusion-controlled metal-assisted chemical etching method”, Nano letters, 17 (2017) 4304-4310.
  25. Chen, Y., Li, L., Zhang, C., Tuan, C. C., Chen, X., Gao, J., Wong, C. P., “Controlling kink geometry in nanowires fabricated by alternating metal-assisted chemical etching”, Nano letters, 17.2 (2017) 1014-1019.
  26. Leon, J. J. D., Hiszpanski, A. M., Bond, T. C., Kuntz, J. D., “Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures”, Advanced Optical Materials, 5 (2017) 1700080.
  27. Pei, Z., Hu, H., Li, S., Ye, C., “Fabrication of Orientation-Tunable Si Nanowires on Silicon Pyramids with Omnidirectional Light Absorption”, Langmuir, 33 (2017) 3569-3575.
  28. Martı́n-Palma, R. J., Vazquez, L., Herrero, P., Martı́nez-Duart, J. M., Schnell, M., Schaefer, S., “Morphological, optical and electrical characterization of anti-reflective porous silicon coatings for solar cells”, Optical Materials, 17 (2001) 75-78.
  29. Li, Q., Gao, J., Li, Z., Yang, H., Liu, H., Wang, X., Li, Y., “Absorption enhancement in nanostructured silicon fabricated by self-assembled nanosphere lithography”, Optical Materials, 70 (2017) 165-170.
  30. Rahman, T., Boden, S. A., “Optical modeling of black silicon for solar cells using effective index techniques”, IEEE Journal of Photovoltaics, 7 (2017) 1556-1562.
  31. Li, J. Y., Hung, C. H., Chen, C. Y., “Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement”, Scientific reports, 7 (2017) 17177.
  32. Chen, H. Y., Lu, H. L., Ren, Q. H., Zhang, Y., Yang, X. F., Ding, S. J., Zhang, D. W., “Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer”, Nanoscale, 7 (2015) 15142-15148.
  33. Song, Y., Kim, K., Choi, K., Ki, B., Oh, J., “Nano/micro double texturing of antireflective subwavelength structures on inverted pyramids”, Solar Energy, 135 (2016) 291-296.
  34. Singh, P., Srivastava, S. K., Yameen, M., Sivaiah, B., Prajapati, V., Prathap, P., Laxmi, S., Singh, B. P., Rauthan, C. M. S., Singh, P. K., “Fabrication of vertical silicon nanowire arrays on three-dimensional micro-pyramid-based silicon substrate”, Journal of materials science, 50 (2015) 6631-6641.
  35. Pant, N., Singh, P., Srivastava, S. K., Shukla, V. K., “Fabrication of nanowire arrays over micropyramids for efficient Si solar cell”, AIP Conference Proceedings, 1728 (2016) 020451.
  36. Rahman, T., Navarro-Cía, M., Fobelets, K., “High density micro-pyramids with silicon nanowire array for photovoltaic applications”, Nanotechnology, 25 (2014) 485202.
  37. Peng, K. Q., Hu, J. J., Yan, Y. J., Wu, Y., Fang, H., Xu, Y., Lee, S., Zhu, J., “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles”, Advanced Functional Materials, 16 (2006) 387–394
  38. Singh, P., Srivastava, S. K., Yameen, M., Sivaiah, B., Prajapati, V., Prathap, P., Laxmi, S., Singh, B. P., Rauthan, C. M. S., Singh, P. K., “Fabrication of vertical silicon nanowire arrays on three-dimensional micro-pyramid-based silicon substrate” Journal of Materials Science, 50 (2015) 6631-6641.
  39. Liu, F. M., Ren, B., Wu, J. H., Yan, J. W., Xue, X. F., Mao, B. W., Tian, Z. , “Enhanced-Raman scattering from silicon nanoparticle substrates”, Chemical physics letters, 382.5-6 (2003) 502-507.