Gum Acacia/Carbopol-Based ‎Biocomposites Loaded with Silver ‎Nnanoparticles as Potential Wound ‎Dressings

Document Type : Research Paper


1 ‎Department of Polymer Technology, Tshwane University of Technology, Pretoria, South ‎Africa.‎

2 Department of Chemistry, University of Fort Hare, Alice Campus, Alice, South Africa.‎

3 Department of Chemistry, University of Zululand, KwaDlangezwa, KwaZulu-Natal, South ‎Africa.‎

4 Department of Polymer Technology, Tshwane University of Technology, Pretoria, South ‎Africa.‎

5 Department of Biotechnology and Food Technology, Faculty of Science, University of ‎Johannesburg, Johannesburg, South Africa.‎

6 Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, ‎Johannesburg, South Africa.‎

7 DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and ‎Industrial Research, Pretoria, South Africa.‎


   Wounds infected with bacteria are treated using wound dressings loaded with antibiotics. However, the use of antibiotics has resulted in drug resistance. In order to overcome drug resistance common with most of the currently used antibiotics, several researchers have evaluated the potential of metal-based nanoparticles as antimicrobial agents.  In this research, smart materials with good antibacterial activity were developed as potential wound dressings from a combination of bio- and synthetic polymers (gum acacia and carbopol, respectively) followed by loading with silver nanoparticles. The biocomposites were pH-sensitive with good water uptake. The hydrogels exhibited a high degree of swelling which increased with increase in pH. Their swelling capability was significant at pH of 7.4 simulating wound exudates. Their physicochemical properties were studied by FTIR, XRD, SEM and AFM. Furthermore, their antibacterial activity was significant against Gram-positive and Gram-negative strains of bacteria used in the study. The significant features of the biocomposites revealed their potential application as smart materials for the treatment of bacteria-infected and high exuding wounds.


  1. Sweere, J. M., Van Belleghem, J.D., Ishak, H., Bach, M.S., Popescu, M., Sunkari, V., Kaber, G., Manasherob, R., Suh, G. A., Cao, X., de Vries, C. R., “Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection”, Science., 363 (2019) 6434-6465.
  2. Heta, S., Robo, I., “The side effects of the most commonly used group of antibiotics in periodontal treatments”. Med. Sci., 6 (2018) 1-6.
  3. Shono, Y., Docampo, M. D, Peled, J. U., Perobelli, S. M., Velardi, E., Tsai, J. J., Slingerland, A. E., Smith, O. M., Young, L. F., Gupta, J., Lieberman, S. R., “Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice”. Sci. Transl. Med., 8 (2016) 339-354
  4. Owonubi, S. J., Ateba, C. N., & Revaprasadu, N., “Co-assembled ZnO-Fe2O3x-CuOx nano-oxide materials for antibacterial protection”. Phosphorus, Sulfur., 196 (2020) 1-7.
  5. Besinis, A., De Peralta, T., Handy, R. D., “The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays”. Nanotoxicology., 8 (2014) 1-6.
  6. Arora, D., Sharma, N., Sharma, V., Abrol, V., Shankar, R., Jaglan, S., “An update on polysaccharide-based nanomaterials for antimicrobial applications”. Appl. Microbiol. Biotechnol., 100 (2016) 2603-2615.
  7. Jung, G., Qin, Z., Buehler, M. J., “Mechanical properties and failure of biopolymers: atomistic reactions to macroscale response”, Springer, Cham, (2015).
  8. Basu, A., Kunduru, K. R., Abtew, E., Domb, A. J., “Polysaccharide-based conjugates for biomedical applications”. Bioconjug. Chem., 26 (2015) 1396-1412.
  9. Shelke, N. B., James, R., Laurencin, C. T, Kumbar, S. G., “Polysaccharide biomaterials for drug delivery and regenerative engineering”. Polym. Adv. Technol., 25 (2014) 448-60.
  10. Li, C., Zhu, B., Xue, H., Chen, Z., Ding, Q., Wang, X., “Physicochemical properties of dry-heated peanut protein isolate conjugated with dextran or gum Arabic”. J. Am. Oil. Chem. Soc., 90 (2013) 1801-1807.
  11. Williams, P., Idris, O., Phillips, G., “Structural analysis of gum from Acacia senegal (gum arabic)”, Springer, Boston, MA, (2000).
  12. El-Hefian, E. A., Nasef, M. M., Yahaya, A. H., “Chitosan-based polymer blends: Current status and applications”. J. Chem. Soc. Pak., 36 (2014) 11.
  13. Oh, S. H, Lee, J. H., “Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility”. Biomed. Mater., 8 (2013) 014101.
  14. Rescignano, N., Hernandez, R., Lopez, L. D., Calvillo, I., Kenny, J. M., Mijangos, C., “Preparation of alginate hydrogels containing silver nanoparticles: a facile approach for antibacterial applications”. Polym. Int. 65 (2016) 921-926.
  15. Hiep, N. T., Khon, H. C., Niem, V. V., Toi, V. V., Tran, N. Q., Hai, N. D., Mai, N, T., (2016) “Microwave-assisted synthesis of chitosan/polyvinyl alcohol silver nanoparticles gel for wound dressing applications”., Int. J. Polym. Sci., (2016), 1584046.
  16. Agnihotri, S., Mukherji, S., Mukherji, S., “Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles”. Appl. Nanosci., 2 (2012) 179-88.
  17. Juby, K. A., Dwivedi, C., Kumar, M., Kota, S., Misra, H. S., Bajaj, P. N., Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydr Polym., 89 (2012) 906-13.
  18. Li, M., Jiang, X., Wang, D., Xu, Z., Yang, M., “In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application”. Colloids. Surf. B. Biointerfaces., 177 (2019).370-376.
  19. Chen, K., Wang, F., Liu, S., Wu, X., Xu, L., Zhang, D., “In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property”. Int. J. Biol. Macromol., 148 (2020) 501-509.
  20. Othman, M., Loh,  S. H., Wiart, C., Khoo, T. J., Lim, K. H., Ting, K. N., “Optimal methods for evaluating antimicrobial activities from plant extracts”. J. Microbiol. Methods., 84 (2011) 161-166.
  21. Horcas, I., Fernández, R., Gomez-Rodriguez, J. M., Colchero, J. W., Gómez-Herrero, J. W., Baro, A. M., “WSXM: a software for scanning probe microscopy and a tool for nanotechnology”. Rev. Sci. Instrum. 78 (2007) 013705.
  22. Ritger, P. L., Peppas, N. A., “A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs”. J. Control. Release, 5 (1987) 23-36.
  23. Renugadevi, K., Aswini, R. V., “Microwave irradiation assisted synthesis of silver nanoparticle using Azadirachta indica leaf extract as a reducing agent and in vitro evaluation of its antibacterial and anticancer activity”. Int. J. Nanomat. Bio., 2 (2012) 5-10.
  24. Verma, A., Mehata, M. S., “Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity”. J. Radiat. Res. Appl. Sci., 9 (2016) 109-115.
  25. Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., Ikram, S., “Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract”. Radiat. Res. Appl. Sci., 9 (2016) 1-7.
  26. Roy, P., Das, B., Mohanty, A., Mohapatra, S., “Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study”. Appl. Nanosci., 7 (2017) 843-850.
  27. Lima, A.K., Vasconcelos, A. A., Sousa Júnior, J. J., Escher, S. K., Nakazato, G., Taube Júnior, P. S., “Green Synthesis of Silver Nanoparticles‎ Using Amazon Fruits”. Int. J. Nanosci. Nanotechnol., 15 (2019) 179-188.
  28. Paseban, N., Ghadam, P., Pourhosseini, P. S., “The Fluorescence Behavior and Stability‎ of AgNPs Synthesized by Juglans Regia‎ Green Husk Aqueous Extract”. Int. J. Nanosci. Nanotechnol., 15 (2019) 117-126.
  29. Kurian, M., Varghese, B., Athira, T. S., Krishna, S., “Novel and efficient synthesis of silver nanoparticles using curcuma longa and zingiber officinale rhizome extracts”. Int. J. Nanosci. Nanotechnol., 12 (2016) 175-181.
  30. Mittal, D., Narang, K., Leekha, A., Kapinder, K., Verma A. K., “Elucidation of Biological Activity of Silver‎ Based Nanoparticles Using Plant‎ Constituents of Syzygium cumini”. Int. J. Nanosci. Nanotechnol., 15 (2019) 189-198.
  31. Kora, A. J., Sashidhar, R. B., Arunachalam, J., “Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application”. Carbohydr. Polym., 82 (2010) 670–679.
  32. Lustosa, A. K, de Jesus Oliveira, A. C., Quelemes, P. V., Plácido, A., Da Silva, F. V., Oliveira I. S., De Almeida, M. P., Amorim, A. D., Delerue-Matos, C., De Oliveira, R. D., Da Silva, D. A., “In situ synthesis of silver nanoparticles in a hydrogel of carboxymethyl cellulose with phthalated-cashew gum as a promising antibacterial and healing agent”. Int. J. Mol. Sci., 18 (2017) 2399.
  33. Reithofer, M. R., Lakshmanan, A., Ping, A. T., Chin, J. M., Hauser, C. A., “In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties”. Biomaterials., 35 (2014) 7535-7542.
  34. GhavamiNejad, A., Park, C. H., Kim, C. S., “In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application”. Biomacromolecules, 17 (2016) 1213-1223.
  35. Bi, X., Liang, A., “In Situ‐Forming Cross‐linking Hydrogel Systems: Chemistry and Biomedical Applications, Emerging Concepts in Analysis and Applications of Hydrogels”. IntechOpen, United Kingdom, (2016).
  36. Matyjaszewski, K., Spanswick, J., “Controlled/living radical polymerization”. Mater. Today, 8 (2005) 26‒33.
  37. Patel, P. K., Pandya, S. S., “Preparation and Characterization of Crosslinked Gum Acacia Microspheres by Single Step Emulsion In-Situ Polymer Crosslinking Method: A Potential Vehicle for Controlled Drug Delivery”. Res. Rev. J. Pharm. Pharm. Sci., 2 (2013) 40-48.
  38. Singh, B., Dhiman, A., “Design of Acacia gum–carbopol–cross-linked-polyvinylimidazole hydrogel wound dressings for antibiotic/anesthetic drug delivery”. Ind. Eng. Chem. Res., 55 (2016) 9176-9188.
  39. Khandai, M., Chakraborty, S., Ghosh, A. K., “Critical analysis of algino-carbopol multiparticulate system for the improvement of flowability, compressibility and tableting properties of a poor flow drug”. Powder Technol., 253 (2014) 223-229.
  40. Ahamed, M. N., Sankar, S., Kashif, P. M., Basha, S. H., Sastry, T. P., “Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles”. Int. J. Biol. Macromol., 72 (2015) 680-686.
  41. Prusty, K., Swain, S. K., “Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications”. Mater. Sci. Eng. C. 85 (2018) 130-141.
  42. Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q., Guo, S., “In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing”. Carbohydr. Polym., 102 (2014) 762-771.
  43. Harris, M., Ahmed, H., Barr, B.,  LeVine, D., Pace, L., Mohapatra, A., Morshed, B., Bumgardner, J. D., Jennings, J. A., “Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release”. Int. J. Biol. Macromol. 104 (2017) 1407-1414.
  44. Bera, H., Abbasi, Y. F., Yoke, F. F., Seng, P. M., Kakoti, B. B., Ahmmed, S. M., Bhatnagar, P., “Ziprasidone-loaded arabic gum modified montmorillonite-tailor-made pectin based gastroretentive composites”. Int. J. Biol. Macromol., 129 (2019) 552-563.
  45. Padmanabhan, V. P., Kulandaivelu, R., Nellaiappan, S. N., “New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications”. Mater. Sci. Eng. C., 92 (2018) 685-693.
  46. Berdous, D., Ferfera-Harrar, H., “Green synthesis of nanosilver-loaded hydrogel nanocomposites for antibacterial application”. Int. J. Pharmacol. Pharm. Sci. 10 (2016) 543-50.
  47. Bajpai, S. K., Bajpai, M., Sharma, L., “In situ formation of silver nanoparticles in poly (N-isopropyl acrylamide) hydrogel for antibacterial applications”. Des. Monomers. Polym. 14 (2011) 383-394.
  48. Bajpai, S. K., Kumari, M., “A green approach to prepare silver nanoparticles loaded gum acacia/poly (acrylate) hydrogels”. Int. J. Biol. Macromol. 80 (2015) 177-188.
  49. Li, L., Wang, N., Jin, X., Deng, R., Nie, S., Sun, L., Wu, Q., Wei, Y., Gong, C., “Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention”. Biomaterials, 35 (2014) 3903-3917.
  50. Oprea, S., Oprea, V., “Synthesis and characterization of the cross-linked polyurethane–gum arabic blends obtained by multiacrylates cross-linking polymerization”. J. Elastom. Plast., 45 (2013) 564-576.
  51. Hindi, S. S., Albureikan, M. O., Al-Ghamdi, A. A. , Alhummiany, H., Ansari, M. S., “Synthesis, characterization and biodegradation of gum Arabic-based bioplastic membranes”. Nanosci. Nanotechnol. 4 (2017) 32-42.
  52. Alves, A., Miguel, S. P., Araujo, A. R., de Jesús Valle, M. J., Sánchez Navarro, A., Correia, I. J., Ribeiro M. P., Coutinho, P., “Xanthan Gum–Konjac Glucomannan Blend Hydrogel for Wound Healing”. Polymers, 12 (2020) 1-15.
  53. Ribeiro, M. P., Morgado, P. I., Miguel, S. P., Coutinho, P., Correia, I. J., “Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing”. Mater. Sci. Eng. C. 33 (2013) 2958-2966.
  54. Thangavel, P., Ramachandran, B., Chakraborty, S., Kannan, R., Lonchin, S., Muthuvijayan, V., “Accelerated healing of diabetic wounds treated with l-glutamic acid loaded hydrogels through enhanced collagen deposition and angiogenesis: an in vivo study”. Sci Rep.7 (2017) 1-5.
  55. Li, Y., Jiang, H., Zheng, W., Gong, N., Chen, L., Jiang, X., Yang, G., “Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair”. J. Mater. Chem. B., 3 (2015) 3498-3507.
  56. Zheng, A., Xue, Y., Wei, D., Li, S., Xiao H, Guan Y., “Synthesis and characterization of antimicrobial polyvinyl pyrrolidone hydrogel as wound dressing”. Soft Mater. 12 (2014) 179-187.
  57. Desphande, D. S., Bajpai, R., Bajpai, A. K., “Water sorption and biocompatibility evaluation of poly(vinyl alcohol-acrylonitrile) based hydrogels”. Soft Mater, 11 (2013) 221–230.
  58. Hamzavi, N., Dewavrin, J. Y., Drozdov, A. D., Birgersson, E., “Nonmonotonic swelling of agarose‐carbopol hybrid hydrogel: Experimental and theoretical analysis”. J. Polym. Sci. Pol. Phys. 55 (2017) 444-454.
  59. Wang, Y., Li, P., Xiang, P., Lu, J., Yuan, J., Shen, J., “Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings”. J. Mater. Chem. B., 4 (2016) 635-648.
  60. Kim, M., Christley, S., Khodarev, N. N., Fleming, I., Huang, Y., Chang, E., Zaborina, O., Alverdy, J., “Pseudomonas aeruginosa wound infection involves activation of its iron acquisition system in response to fascial contact”. J. Trauma Acute Care Surg., 78 (2015) 823.
  61. Michelotti, F., Bodansky, H. J., “Bacillus cereus causing widespread necrotising skin infection in a diabetic person”. Pract Diabetes, 32 (2015) 169-170a.
  62. DeLeon, S., Clinton, A., Fowler, H., Everett, J., Horswill, A. R., Rumbaugh, K. P., “Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model”. Infect immune. 82 (2014) 4718-4728.
  63. Endimiani, A., Luzzaro, F., Brigante, G., Perilli, M., Lombardi, G., Amicosante, G., Rossolini, G. M., Toniolo, A., “Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum β-lactamases”. Antimicrob. Agents Chemother. 49 (2005) 2598-2605.
  64. Wang, J. T., Chen, P. C., Chang, S. C., Shiau, Y. R., Wang, H. Y., Lai, J. F., Huang, I. W., Tan, M. C., Lauderdale, T. L., “Antimicrobial susceptibilities of Proteus mirabilis: a longitudinal nationwide study from the Taiwan surveillance of antimicrobial resistance (TSAR) program”. BMC Infect. Dis. 4 (2014) 486.
  65. Jamshidi, D., Sazegar, M. R., “Antibacterial Activity of a Novel Biocomposite Chitosan/Graphite Based on Zinc-Grafted Mesoporous Silica Nanoparticles”. Int. J. Nanomed. 15 (2020) 871-883.
  66. Luan, Y., Liu, S., Pihl, M., van der Mei, H. C., Liu, J., Hizal, F., Choi, C. H., Chen, H., Ren, Y., Busscher, H. J., “Bacterial interactions with nanostructured surfaces”. Curr. Opin. Colloid Interface Sci. 38 (2018) 170-189.
  67. Rodríguez Nuñez, Y. A., Castro, R. I., Arenas, F. A., López-Cabaña, Z. E., Carreño, G., Carrasco-Sánchez, V., Marican, A., Villaseñor, J., Vargas, E., Santos, L. S., Durán-Lara, E. F., “Preparation of Hydrogel/Silver Nanohybrids Mediated by Tunable-Size Silver Nanoparticles for Potential Antibacterial Applications”. Polymers, 11 (2019) 716.
  68. Kim, J. S., Kuk, E., Yu, K., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang,  C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., Cho, M. H., “Antimicrobial effects of silver nanoparticles”, Nanomedicine, 3 (2007) 95–101.
  69. Prabhu, S., Poulose, E. K., “Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects”, Int. Nano. Lett. 2 (2012) 32-42.
  70. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D., “Characterisation of enhanced antibacterial effects of novel silver nanoparticles”, Nanotechnology, 18 (2007) 1-9.