Photocatalytic Degradation of Safranin ‎Dye from Aqueous Solution Using Nickel ‎Nanoparticles Synthesized by Plant ‎Leaves

Document Type : Research Paper

Authors

1 Department of Chemistry, University of Torbat-e jam, Torbat-e jam, Iran.‎

2 Department of Water Engineering, University of Torbat-e Jam, Torbat-e Jam, Iran.‎

3 Department of Chemistry, University of Birjand, Birjand, Iran.‎

Abstract

   In this paper, a facile and eco-friendly method for the preparation of Ni nanoparticles (Ni NPs) has been described based on the bioreduction of aqueous Ni(II) precursors with Phlomis cancellata Bunge extract. UV-visible spectrum of the aqueous medium containing Ni nanoparticles showed a peak of 390 nm. Since the experimental conditions of this procedure play vital roles in the synthesis rate of the NPs, a response surface methodology using the central composite design was employed for testing the reaction variables. The individual and interactive effects of process variables (temperature, time, concentration of Ni(NO3)2 and pH) upon extracellular biological synthesis of Ni NPs by Phlomis cancellata Bunge were studied. The statistical and perturbation plot analysis suggest that a reaction temperature of 90 °C, duration of 30 min., pH of 9.5 and concentration of 26 mM of Ni(NO3)2 would produce the highest amount of nanoparticles. The NPs were characterized by Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), UV-Visible, and Infrared spectroscopy (IR). The SEM image of Ni NPs showed that the particle shape varied from spherical to polyhedral and ranged between 15 to 25 nm in size. These Ni NPs were studied for their potential role in photocatalytic degradation of safranin dye under solar light irradiation. At optimized conditions, up to 90% safranin dye degradation was achieved.

Keywords


  1. Remya, V. R, Abitha, V. K., Rajput, P. S., Rane, A. V., Dutta, A., (2017). ̒ ̒ Silver nanoparticles green synthesis: a mini review ̓ ̓, Chem. Int., 3: 165-171.
  2. Monsef Khoshhesab, Z., Ayazi, Z., Dargahi M., (2020). ̒ ̒ Synthesis of Magnetic Graphene Oxide ‎Nanocomposite for Adsorption Removal of ‎Reactive Red 195: Modelling and ‎Optimizing via Central Composite Design ̓ ̓, Int. J. Nanosci. Nanotechnol., 16: 35-48
  3. Tawfik A. Saleh., Vinod K. Gupta., (2012). ̒ ̒ Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide ̓ ̓, J. Colloid Interface Sci., 371: 101-106.
  4. Zeinali, S; Tatian, S., (2019). ̒ ̒ Vanadium Removal from Fuel Oil and ‎Waste Water in Power Plant Using Humic ‎Acid Coated Magnetic Nanoparticles ̓ ̓, Int. J. Nanosci. Nanotechnol., 15: 249-263.
  5. Devaraj, M., Saravanan, R., Deivasigamani, R. K., Gupta, V. K., Jayadevan, S., (2016). ̒ ̒ Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol ̓ ̓, J. Mol. Liq., 221: 930-941.
  6. Saravanan, R., Joicy, S., Gupta, V. K., Narayanan, V., Stephen, A., (2013). ̒ ̒ Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts ̓ ̓, Mater. Sci. Eng. C., 33, 4725-4731.
  7. Saravanan, R., Karthikeyan, N., Gupta, V. K., Thirumal, E., Stephen, A., (2013). ̒ ̒ ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light ̓ ̓, Mater. Sci. Eng. C., 33: 2235-2244.
  8. Gupta, V. K., Atar, N., Yola, M. L., Zafer Ustundag, Z., Uzun, L., (2014). ̒ ̒ A novel magnetic Fe@Au coreeshell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds ̓ ̓, Water. Res., 48: 210-217.
  9. Yola, M. L., Gupta, V. K., Eren, T., Sen, A. E., Atar, N., (2014). ̒ ̒ A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin ̓ ̓, Electrochim. Acta., 120: 204-211.
  10. Vanaja, A; Suresh, M; Jeevanandam, J., (2019). ̒ ̒ Facile Magnesium Doped Zinc Oxide ‎Nanoparticle Fabrication and ‎Characterization for Biological Benefits ̓ ̓, Int. J. Nanosci. Nanotechnol., 15: 277- 286.
  11. Ghaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Gupta, V. K., (2015). ̒ ̒ Modeling of competitive ultrasonic assisted removal of the dyes – Methylene blue and Safranin-O using Fe3O4 nanoparticles ̓ ̓, Chemical Eng. J., 268: 28-37.
  12. A. Banisharif, A., Hakim Elahi, S., Anaraki Firooz, A., Khodadadi, A. A., Mortazavi, Y., (2013). ̒ ̒ TiO2/Fe3O4 Nanocomposite Photocatalysts for Enhanced Photo-Decolorization of Congo Red Dye ̓ ̓, Int. J. Nanosci. Nanotechnol., 9: 193-202.
  13. Saravanan, R., Sacari, E., Gracia, F., Mansoob Khan, M., Gupta, V. K., (2016). ̒ ̒ Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes ̓ ̓, J. Mol. Liq., 221: 1029-1033.
  14. Rajendran, S., Mansoob Khan, M., Gracia, F., Qin, J., Gupta, V. K., Arumainathan, S., (2016). ̒ ̒ Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite ̓ ̓, Sci. Rep., 6: 1-11.
  15. Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Stephen, A., (2013). ̒ ̒ Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination ̓ ̓, Mater. Sci. Eng. C., 33: 91-98.
  16. Saravanan, R., Thirumal, E., Gupta, V. K., Narayanan, V., Stephen, A., (2013). ̒ ̒ The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures ̓ ̓, J. Mol. Liq., 177: 394-401.
  17. Saravanan, R., Gupta, V. K., Prakash, T., Narayanan, V., Stephen, A., (2013). ̒ ̒ Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method ̓ ̓, J. Mol. Liq., 178: 88-93.
  18. Narayan, H., Alemu, H., (2017). ̒ ̒ A Comparison of Photocatalytic Activity of ‎TiO2 Nanocomposites Doped with Zn2+/Fe3+ ‎and Y3+ Ions ̓ ̓, Int. J. Nanosci. Nanotechnol., 13: 315-325.
  19. Saleh, T. A., Gupta, V. K., (2011). ̒ ̒ Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B ̓ ̓, J. Colloid. Interface. Sci., 362: 337-344. 
  20. Huang, X., Ratchford, D., Pehrsson, P. E., Yeom, J., (2016). ̒ ̒ Fabrication of metallic nanodisc hexagonal arrays using nanosphere lithography and two-step lift-off ̓ ̓, Nanotechnol., 27: 395302-395309. 
  21. Kim, M., Osone, S., Kim, T., Higashi, H., Seto, T., (2017). ̒ ̒ Synthesis of Nanoparticles by Laser Ablation: A Review ̓ ̓, KONA Powder Part J., 34: 80-90. 
  22. Tsukuda, S., Takahasi, R., Seki, S., Sugimoto, M., Idesaki, A., Yoshikawa, M., Tanaka, S. I., (2016). ̒ ̒ Fabrication of Pt nanoparticle incorporated polymer nanowires by high energy ion and electron beam irradiation ̓ ̓, Radiat. Phys. Chem., 118: 16-20. 
  23. Khan, A., Rashid, A., Younas, R., Chong, R., (2016). ̒ ̒ A chemical reduction approach to the synthesis of copper nanoparticles ̓ ̓, Int Nano Lett., 6: 21-26. 
  24. Ahmadi, R., Razaghian, A., Eivazi, Z., Shahidi, K., (2018). ̒ ̒ Synthesis of Cu-CuO and Cu-Cu2O Nanoparticles via Electro-Explosion of Wire Method ̓ ̓, Int. J. Nanosci. Nanotechnol., 14: 93-99.
  25. Eustis, S., Hsu, H. Y., El-Sayed, M. A., (2005). ̒ ̒ Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism ̓ ̓, J. Phys. Chem. B., 109: 4811-4815. 
  26. Salata, O. V., (2004). ̒ ̒ Applications of nanoparticles in biology and medicine ̓ ̓, J. Nanobiotechnol., 2: 1-6.
  27. Lima, A. K. O; Vasconcelos, A. A; Sousa Junior, J. J. V; Escher, S. K. S; Nakazato, G; Taube Junior, P.S., (2019). ̒ ̒ Green Synthesis of Silver Nanoparticles ‎Using Amazon Fruits ̓ ̓, Int. J. Nanosci. Nanotechnol., 15: 179-188.
  28. Karatoprak, G. S., Aydin, G., Altinsoy, B., Altinkaynak, C., Koşar, M., Ocsoy, I., (2017). ̒ ̒ The Effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities ̓ ̓, Enz. Microb. Technol., 97: 21-26. 
  29. Liu, S., Mei, J., Zhang, C., Zhang, J., Shi, R., (2017). ̒ ̒ Synthesis and magnetic properties of shuriken-like nickel nanoparticles ̓ ̓, J. Mater. Sci. Technol., 34: 836- 341.
  30. Pandian, C. J., Palanivel, R., Dhananasekaran, S., (2015). ̒ ̒ Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption ̓ ̓, Chin. J. Chem. Eng., 23: 1307-1315. 
  31. Prieto, P., Nistor, V., Nouneh, K., Oyama, M., Abd-Lefdil, M., Diaz, R., (2012). ̒ ̒ XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth ̓ ̓, Appl. Surf. Sci.,  258: 8807- 8813. 
  32. Sharma, P., Singh, S., Virk, H. S., (2010). ̒ ̒ Formation of CdS Nanoparticles in Microemulsion Using Different Co-surfactant and Water to Surfactant Molar Ratio ̓ ̓, Int. J. Nanosci. Nanotechnol., 6: 236-243.
  33. Hou, Y., Gao, S., (2003). ̒ ̒ Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties ̓ ̓, J Mater Chem., 13: 1510- 1512. 
  34. Mohd Zorkipli, N. N., Mohd Kaus, N. H., Mohamad, A. A., (2016). ̒ ̒ Synthesis of NiO Nanoparticles through Sol-gel Method ̓ ̓, Procedia Chem., 19: 626- 631. 
  35. Eluri, R., Paul, B., (2012). ̒ ̒ Microwave assisted greener synthesis of nickel nanoparticles using sodium hypophosphite ̓ ̓, Mater. Lett., 76: 36-39. 
  36. Abu-Much, R., Gedanken, A., (2008). ̒ ̒ Sonochemical Synthesis under a Magnetic Field: Fabrication of Nickel and Cobalt Particles and Variation of Their Physical Properties ̓ ̓, Chem Eur J., 14: 10115-10122. 
  37. Nouren, S., Bhatti, H. N., Iqbal, M., Bibi, I., Kamal, S., Sadaf, S., Sultan, M., Kausar, A., Safa, Y., (2017). ̒ ̒ By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye ̓ ̓, Chemosphere., 169: 474-484. 
  38. Bibi, I., Kamal, S., Ahmed, A., Iqbal, M., Nouren, S., Jilani, K., Nazar, N., Amir, M., Abbas, A., Ata, S., Majid, F., (2017). ̒ ̒ Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation ̓ ̓, Int J Biol Macromol., 103: 783-790. 
  39. Rameshthangam, P., Chitra, J. P., (2018). ̒ ̒ Synergistic anticancer effect of green synthesized nickel nanoparticles and quercetin extracted from Ocimum sanctum leaf extract ̓ ̓, J. Mater. Sci. Technol., 34 (3): 508-522. 
  40. Vasudeo, K., Pramod, K., (2016). ̒ ̒ Biosynthesis of Nickel Nanoparticles Using Leaf Extract of Coriander ̓ ̓, Biotechnol Ind J., 12: 106- 111.
  41. Sudhasree, S., Mahalakshmi, S., Brindha, P., Kurian, G., (2014). ̒ ̒ Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity ̓ ̓, Toxicol. Environ. Chem., 96: 743-754.
  42. Mittal, D., Narang, K., Leekha Kapinder, A., Kumar, K., Verma, A. K., (2019). ̒ ̒ Elucidation of Biological Activity of Silver ‎Based Nanoparticles Using Plant ‎Constituents of Syzygium cumini ̓ ̓, Int. J. Nanosci. Nanotechnol., 15: 189-198.
  43. Gupta, V. K., Nayak, A., Agarwal, S., (2015). ̒ ̒ Bioadsorbents for remediation of heavy metals: Current status and their future prospects ̓ ̓, Environ. Eng. Res., 20: 1-18. 
  44. Pal, S., Mondal, S., Maity, J., Mukherjee, R., (2018). ̒ ̒ Synthesis and Characterization of ZnO Nanoparticles using Moringa Oleifera Leaf Extract: Investigation of Photocatalytic and Antibacterial Activity ̓ ̓, Int. J. Nanosci. Nanotechnol., 14: 111-119.
  45. Gupta, V. K., Ali, I., Saleh, T. A., Siddiqui, M. N., Agarwal, S., (2013). ̒ ̒ Chromium removal from water by activated carbon developed from waste rubber tires ̓ ̓, Environ. Sci. Pollut. Res., 20: 1261-1268. 
  46. Gupta, V. K., Suhas., Tyagi, I., Agarwal, S., Singh, R., Chaudhary, M., Harit, A., Kushwaha, S., (2016). ̒ ̒ Column operation studies for the removal of dyes and phenols using a low cost adsorbent ̓ ̓, Global J. Environ. Sci. Manage., 2: 1-10. 
  47. Hasani-Ranjbar, Sh., Larijani, B., Abdollahi. M., (2008). ̒ ̒ A systematic review of Iranian medicinal plants useful in diabetes mellitus ̓ ̓, Arch. Med. Sci., 4: 285-292. 
  48. Khalid, N., Munetaka, O., Raquel, D., Mohammed, A., Kityk, I. V., Mosto, B., (2011). ̒ ̒ Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches ̓ ̓, J. Alloys Compd., 509 (19): 5882-5886. 
  49. Govindasamy, R., Jeyaraman, R., Kadarkaraithangam, J., Arumugam, M., Gandhi, E., Chinnaperumal, K., Thirunavukkarasu, S., Sampath, M., Abdul, A. Z., Asokan, B., Chidambaram, J., Arivarasan, V. K., Moorthy, I., Chinnadurai, S., (2013). ̒ ̒ Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites ̓ ̓, Vet. Parasitol., 191: 332-339. 
  50. Mallikarjuna, K., Narasimha, G., Dillip, G., Praveen, B., Shreedhar, B., Sreelakshmi, C., Reddy, B., Deva, P., (2011). ̒ ̒ Green synthesis of silver nanoparticles using ocimum leaf extract and their characterization ̓ ̓, Dig. J. Nanomater. Biostruct., 6: 181-186. 
  51. Zhang, H., Ran, X., Wu, X., Zhang, D., (2011). ̒ ̒ Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology ̓ ̓, J. Hazard. Mater., 188: 261-268. 
  52. Iqbal, M., Bhatti, I. A., (2015). ̒ ̒ Gamma radiation/H2O2 treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation ̓ ̓, J. Hazard. Mater., 299: 351-360.