The Effect of Temperature and Acidity on ‎Antimicrobial Activities of Pristine ‎MWCNTs and MWCNTs-Arg

Document Type : Research Paper


1 ‎Hematology and Oncology Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi ‎University of Medical Sciences and Health Services, Yazd, Iran.‎ ‎

2 Farhangian University at Esfahan, Esfahan, Iran.‎

3 ‎Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of ‎Mashhad, Mashhad, Iran. ‎

4 ‎Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares ‎University, Tehran 14115, Iran.‎

5 ‎Department of Reproductive Biology, Yazd Reproductive Sciences Institute, ‎Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical ‎Sciences, Yazd, Iran.‎

6 ‎Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, ‎United States.‎

7 ‎Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, ‎Tehran, Iran.‎

8 ‎Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, ‎Iran.‎

9 ‎Abadan Faculty of Medical Sciences, Abadan, Iran

10 ‎Reproductive Immunology Research Center, Shahid Sadoughi University of Medical ‎Sciences, Yazd, Iran.‎

11 ‎Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical ‎Sciences, Yazd, Iran.‎


   Carbon nanotubes (CNTs) have very promising applications for inhibition of microbial growth. The aim of this study is investigation and comparison of the effect of temperature and acidity on antimicrobial activities of pristine Multiwalled Carbon nanotubes (MWCNTs) and Multiwalled Carbon nanotubes-Arginine (MWCNTs-Arg). Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were calculated in range of temperature (25, 37 and 42 ºC) and pH (4.2, 7.2, and 10) on Staphylococcus aureus. The results approved that pristine and functionalized MWCNTs have broad-spectrum antimicrobial activities against examined pathogen. Between these agents, MWCNTs-Arg and pristine MWCNTs and have the highest inhibitory activity on microbial growth, respectively. The MBC value of MWCNTs was improved by amino acid functionalization. The optimal pH for antimicrobial activity of pristine MWCNTs and MWCNTs-Arg are 4.2 and 7.2 and optimal temperatures are 42 ºC and 42 ºC, respectively. There is no change on optimal temperature of MWCNTs by this functionalization, but functionalization of MWCNTs by Arg enhanced its antimicrobial activity and led to change of optimal pH of MWCNTs for antimicrobial activity. This changes lead to suitable improvement of antimicrobial activity in neutral and biological pH.


  1. Lashkari, B., Dehestani, M., Khosravan, A., Dehestani, M., (2017), “Investigation of Molecular Selenium ‎Adsorption to the Outer Surface of Single ‎Wall Carbon Nanotubes”, Int. J. Nanosci. Nanotechnol., 13: 129-137.
  2. Basir Jafari, S., Malekfar, R., Khadem, S. E. R., (2001). ”Radial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory”, Int. J. Nanosci. Nanotechnol., 7: 137-142.
  3. Farhadian, N., (2011). “Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube”, Int. J. Nanosci. Nanotechnol., 7: 173-182.
  4. Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K.,  Adibkia, K., (2015 ). “Antimicrobial activity of carbon-based nanoparticles”, Adv Pharm Bull, 5: 19-23:
  5. Al-Jumaili, A., Alancherry, S., Bazaka, K., Jacob, M. V., (2017). “Review on the Antimicrobial Properties of Carbon Nanostructures”, Materials (Basel), 10: 1066-1071.
  6. Zhang, M., Li, J., (2009). “Carbon nanotube in different shapes”. Mater Today, 12: 12-18.
  7. Dong, L., Henderson, A., Field, C. A., (2012)”ntimicrobial Activity of Single-Walled Carbon Nanotubes Suspended in Different Surfactants”, J. Nanotechnol., 2012: 1-9.
  8. Yu, L., Zhang, Y., Zhang, B., Liu, J., (2014). “Enhanced Antibacterial Activity of Silver Nanoparticles/Halloysite Nanotubes/Graphene Nanocomposites with Sandwich-Like Structure”, Scientific Reports, 4: 4551-4568.
  9. Vardharajula, S. et al. , (2012). “Functionalized carbon nanotubes: biomedical applications”, Int J Nanomedicine, 7: 5361-5374.
  10. Zhang, Y., Bai, Y., Yan, B., (2010). “Functionalized carbon nanotubes for potential medicinal applications”, Drug Discov Today, 15: 428-435.
  11. Soleimani, M., Ghahraman Afshar, M., Sedghi, A., (2013).  “Amino-Functionalization of Multiwall Carbon Nanotubes and Its Use for Solid Phase Extraction of Mercury Ions from Fish Sample”, ISRN Nanotechnology, 2013: 8-19
  12. Avilés, F., Cauich-Rodríguez, J. V., Moo-Tah, L., May-Pat, A., Vargas-Coronado, R., (2009).“Evaluation of mild acid oxidation treatments for MWCNT functionalization”,  Carbon, 47: 2970-2975.
  13. Tan, S. H., Goak, J. C., Lee, N., Kim, J.-Y., Hong, S. C., (2007). “Functionalization of Multi-Walled Carbon Nanotubes with Poly(2-ethyl-2-oxazoline)”, Macromolecular Symposia, 249: 275-270.
  14. Meng, J. et al., (2012). “Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation”, PLoS One, 7: e38995-e38995.
  15. Zhang, T. et al., (2017). “Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study”, Int J Nanomedicine, 12: 1539-1554.
  16. Yu, J. et al., (2016).“Comparison of Cytotoxicity and Inhibition of Membrane ABC Transporters Induced by MWCNTs with Different Length and Functional Groups”, Environ Sci Technol, 50: 3985-3994.
  17. Zardini, H. Z., Amiri, A., Shanbedi, M., Maghrebi, M., Baniadam, M., (2012). “Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method”, Colloid Surface B, 92: 196-202.
  18. Li, B., Webster, T. J., (2018).“Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections”, J. Orthop. Res., 36: 22-32.
  19. Chokshi, A., Sifri, Z., Cennimo, D., Horng, H. “Global Contributors to Antibiotic Resistance” J. Glob. Infect Dis., 11: 36-42.
  20. Chandler, C. I. R., (2019).“Current accounts of antimicrobial resistance: stabilisation, individualisation and antibiotics as infrastructure”, Palgrave Communications, 5: 53-60
  21. Al-Jumaili, A., Alancherry, S., Bazaka, K., Jacob, M. V., (2017). “Review on the antimicrobial properties of carbon nanostructures”, Materials ,10:1066-1072
  22. Dizaj, S. M., Mennati, A., Jafari, S., Khezri, K., Adibkia, K., (2015). “Antimicrobial activity of carbon-based nanoparticles”, Adv. Pharm. Bull., 5: 19-27.
  23. Freitas, T. A., Mattos, A. B., Silva, B. V. M., Dutra, R. F., (2014).“Amino-functionalization of carbon nanotubes by using a factorial design: human cardiac troponin T immunosensing application”, Biomed. Res. Int., 2014: 929786.
  24. Mallakpour, S., Zadehnazari, A., (2013). “Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites”, Synthetic Metals, 169: 1–11.
  25. Mallakpour, S., Zadehnazari, A., (2013). “Functionalization of multiwalled carbon nanotubes with S-valine amino acid and its reinforcement on amino acid-containing poly(amide-imide) bionanocomposites”, High Perform Polym., 25: 966-979.
  26. Zare-Zardini, H., Amiri, A., Shanbedi, M., Memarpoor-Yazdi, M., Asoodeh, A., (2013). “Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique”, Surf. Interface Anal, 45:751-755.
  27. Amiri, A. et al., (2012). “Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion”, Mater. Lett., 72: 153-156.
  28. Zardini, H. Z., Amiri, A., Shanbedi, M., Maghrebi, M., Baniadam, M., (2012). “Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method”, Colloids Surf B Biointerfaces, 92: 196-202 .
  29. Ménard-Moyon, C., Kostarelos, K., Prato, M., Bianco, A., (2010). “Functionalized Carbon Nanotubes for Probing and Modulating Molecular Functions”, Chemistry & Biology, 17: 107-115.
  30. Esteban, P. P. et al., (2014).“Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions”, Biotechnol. Prog., 30: 932-944.
  31. Pumera, M., Sasaki, T., Iwai, H., (2008). “Relationship between Carbon Nanotube Structure and Electrochemical Behavior: Heterogeneous Electron Transfer at Electrochemically Activated Carbon Nanotubes”, Chemistry – An Asian Journal, 3: 2046-2055.
  32. Hsieh, H. S., Wu, R., Jafvert, C. T., (2014). “Light-independent reactive oxygen species (ROS) formation through electron transfer from carboxylated single-walled carbon nanotubes in water”, Environ Sci. Technol. ,48: 11330-11336 .
  33. Kim, J. S., Yu, I. J. , (2014). “Single-wall carbon nanotubes (SWCNT) induce cytotoxicity and genotoxicity produced by reactive oxygen species (ROS) generation in phytohemagglutinin (PHA)-stimulated male human peripheral blood lymphocytes”, J. Toxicol Environ Health A, 77: 1141-1153.