Amido-Amino Clay Stabilized Copper ‎Nanoparticles: Antimicrobial Activity and ‎Catalytic Efficacy for Aromatic Amination

Document Type : Research Paper


1 ‎Department of Chemistry, Pondicherry University, Pondicherry, PY 605014 India.‎

2 ‎Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai, ‎ TN 600025 India.‎


   Amido-amino functionalized halloysite stabilized copper nanoparticles (aah-CuNPs) were synthesized through one-pot protocol by a wet chemical method using hydrazine as reducing agent. The nanocomposite formed was stable in dry ethanol. The composition and binding nature of the nanocomposite were studied using FT-IR, DRS-UV, EDAX and powder XRD techniques. The morphological features of the composite were obtained from HRSEM analysis. The thermal stability of the copper nanocomposites was studied using TGA analysis. The prepared nanocomposite displayed broad spectrum antimicrobial activity, and it was very effective in Ullmann aromatic amination reaction.


  1. Liu, S., Pestano, J. P. C., Wolf, C., (2007). “Regioselective copper-catalyzed C-N and C-S bond formation using amines, thiols and halobenzoic acids”, Synthesis, 22: 3519-3527.
  2. Ayoman , E., Hossini, G.,  N. Haghighi, N., (2015). “Synthesis of CuO nanoparticles and study on their catalytic properties”, Int. J. Nanosci. Nanotechnol., 11: 63-70.
  3. Rahimi, P., Hashemipour, H., Ehtesham Zadeh, M., Ghader, S., (2010). “Experimental investigation on the synthesis and size control of copper nanoparticle via chemical reduction method”, Int. J. Nanosci. Nanotechnol., 6: 144-149.
  4. Shadrokh, Z., Yazdani, A., Eshghi, H., (2017). “Study on structural and optical properties ‎of wurtzite Cu2ZnSnS4 nanocrystals ‎synthesized via solvothermal method”, Int. J. Nanosci.  Nanotechnol., 13: 359-366.
  5. Ahmadi, R., Razaghian, A., Eivazi, Z., Shahidi, K., (2018). “Synthesis of Cu-CuO and Cu-Cu2O nanoparticles via electro-explosion of wire method”, Int. J. Nanosci. Nanotechnol., 14: 93-99.
  6. Khorshidi, A. R., Sh. Shariati, Sh., (2016). “-OSO3H Functionalized mesoporous MCM-41 coated on Fe3O4 nanoparticles: an efficient and recyclable nano-catalyst for preparation of 3,2′-bisindoles”, Int. J. Nanosci. Nanotechnol., 12: 139-147.
  7. Maleki, A., (2016). “Efficient synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in the presence of ferrite/chitosan as a green and reusable nanocatalyst”, Int. J. Nanosci. Nanotechnol., 12: 215-222.
  8. Keshipour, S., Kalam Khalteh, N., (2017). “Pd and Fe3O4 Nanoparticles supported on ‎N-(2-aminoethyl)acetamide functionalized ‎cellulose as an efficient catalyst for ‎epoxidation of styrene”,  Int. J. Nanosci. Nanotechnol., 13: 219-226.
  9. Anaraki Firooz, A., (2018). “Mo-Doped SnO2 nanoparticles: a case study for selective epoxidation of cycloocten”, Int. J. Nanosci. Nanotechnol., 14: 159-163.
  10. Crabbe, B. W., Kuehm, O. P., Bennettb, J. C., Hallett-Tapley, G. L., (2018). “Light-activated Ullmann homocoupling of aryl halides catalyzed using gold nanoparticle-functionalized potassium niobium oxides”, Catal. Sci. Technol., 8: 4907-4915.
  11. Kunz, K., Scholz, U., Ganzer, D., (2003). “Renaissance of Ullmann and Goldberg reactions - progress in copper catalyzed C-N-, C-O- and C-S-coupling”, Synlett., 15: 2428-2439.
  12. Shaughnessy, K. H., Ciganek, E., DeVasher, R. B., (2014). “Copper-catalysed amination of aryl and alkenyl electrophiles”, Org. React. 85: 1-668.
  13. Hartwig, J. F., (2008). “Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides”, Acc. Chem. Res. 41: 1534-1544.
  14. M. Cortes-Salva, M., Garvin, C., Antilla, J. C., (2011). “Ligand-free copper-catalyzed arylation of amidines”, J. Org. Chem., 76: 1456-1459.
  15. Yang, X., Liu, H., Fu, H., Qiao, R., Jiang, Y., Zhao, Y., (2010). “Efficient Copper-Catalyzed Synthesis of 4-Aminoquinazoline and 2,4-Diaminoquinazoline Derivatives”, SynLett., 1: 101-106.
  16. Wolf, C., Liu, S., Mei, X., August, A. T., Casimir, M. D., (2006). “Regioselective Copper-Catalyzed Amination of Bromobenzoic Acids Using Aliphatic and Aromatic Amines”, J. Org. Chem., 71: 3270-3273.
  17. Kwong, F. Y., Klapars, A., Buchwald, S. L., (2002). “Copper-catalyzed coupling of alkylamines and aryl iodides:  an efficient system even in an air atmosphere”, Org. Lett., 4: 581-584.
  18. Jiao, J., Zhang, X.-R., Chang, N.-H., Wang, J., Wei, J.-F., Shi, X.-Y., Chen, Z.-G., (2011).  “A facile and practical copper powder-catalyzed, organic solvent- and ligand-free Ullmann amination of aryl halides”, J. Org. Chem., 76: 1180-1183.
  19. Zhang, Y., Yang, X., Yao, Q., Ma, D., (2012). “CuI/DMPAO-Catalyzed N-Arylation of Acyclic Secondary Amines”, Org. Lett., 14: 3056-3059.
  20. Zhou, W., Fan, M., Yin, J., Jiang, Y., Ma, D., (2015). “CuI/Oxalic diamide catalyzed coupling reaction of (hetero)aryl chlorides and amines”, J. Am. Chem. Soc., 137: 11942-11945.
  21. Gao, J., Bhunia, S., Wang, K., Gan, L., Xia, S., Ma, D., (2017). “Discovery of N-(Naphthalen-1-yl)-N′-alkyl Oxalamide Ligands Enables Cu-Catalyzed Aryl Amination with High Turnovers”, Org. Lett., 19: 2809-2812.
  22. Chen, Y.-J., Chen, H.-H., (2006). “1,1,1-Tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols”, Org. Lett., 8: 5609-5612.
  23. Vandarkuzhali, S. A. A., Radha, N., Pandian, K., (2013). “Water Soluble Iron aminoclay for Catalytic Reduction of Nitrophenol”, Orient. J. Chem., 29: 661-665.
  24. Ramya, R., Jaculin Raiza, A., Devi, S., Raghunathan, R., Pandian, K., (2014-2015). “Synthesis of aminoclay protected palladium nanoparticles and study its catalytic activity in organic synthesis”, Int. J. ChemTech Res., 7: 1297-1302.
  25. Datta, K. K. R., Kulkarni, C., Eswaramoorthy, M., (2012). “Aminoclay: a permselective matrix to stabilize copper nanoparticles”, Chem. Commun., 46: 616-618.
  26. Raji, M., Mekhzoum, M. E. M., el Kacem Qaiss, A., Bouhfid, R., (2016). “Nanoclay modification and functionalization for nanocomposites development: Effect on the structural, morphological, mechanical and rheological properties. In Nanoclay Reinforced Polymer Composites”, Springer, Berlin, Germany.
  27. Luty´nski, M., Sakiewicz, P., Luty´nska, S., (2019). “Characterization of diatomaceous earth and halloysite resources of Poland”, Minerals, 9: 670; doi:10.3390/min9110670.
  28. Zhang, P., Shao, C., Zhang, Z., Zhang, M., Mu, J., Guo, Z., Liu, Y., (2011). “In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol”, Nanoscale, 3: 3357-3363.
  29. Pinto, R. J. B., Neves, M. C., Neto, C. P., Trindade, T., (2013). “Composites of cellulose and metal nanoparticles: In Nanocomposites – New trends and developments”, Ebrahimi F., Ed., 2012, 73-96.
  30. Liu, S., Hu, M., Zeng, T. H., Wu, R., Jiang, R., Wei, J., Wang, L., Kong, J., Chen, Y., (2012). “Lateral dimension-dependent antibacterial activity of graphene oxide sheets”, Langmuir, 28: 12364-12372.