Synthesis, Characterization, and ‎Antibacterial Activity of ZnO ‎Nanoparticles from Organic Extract of ‎Cola Nitida and Cola Acuminata Leaf‎

Document Type : Research Paper

Authors

1 ‎Resource Chemistry Program, Faculty of Resource Science and Technology, Universiti ‎Malaysia Sarawak 94300, Kota Samarahan, Sarawak, Malaysia.‎ ‎

2 Graduate School of Nuclear and Allied Sciences, University of Ghana, AE1, Kwabenya-‎Accra, Ghana.‎

3 ‎1Resource Chemistry Program, Faculty of Resource Science and Technology, Universiti ‎Malaysia Sarawak 94300, Kota Samarahan, Sarawak, Malaysia.‎

4 ‎Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, ‎Ghana.‎

5 ‎Resource Chemistry Program, Faculty of Resource Science and Technology, Universiti ‎Malaysia Sarawak 94300, Kota Samarahan, Sarawak, Malaysia.‎

6 St. Joseph’s College of Education, Bechem, Brong Ahafo Region, Ghana. ‎

Abstract

   The study aimed at the synthesis and antibacterial activity of ZnO nanoparticles (NPs) from organic extracts of Cola nitida and Cola acuminata leaf using zinc chloride (ZnCl2) and zinc acetate dihydrate [Zn(CH3COO)2∙2H2O] as precursors on selected Gram positive and Gram negative microbes: Staphylococcus aureus, Exiguobacterium aquaticum, (Gram +ve) and Escherichia coli, Klebsielia pneumonia, Acinetobacter baumanni (Gram –ve). Spherical and flake-like nanostructures were recorded by Scanning Electron Microscopy (SEM) for C. acuminata and C. nitida respectively for the two precursors used. The average particle size and crystallite size determined by Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) for C. acuminata and C. nitida were in the range of 32.15-43.26 nm; 69.12-84.26 nm and 14.69-17.12 nm; 23.68-23.96 nm respectively. Energy-dispersive X-ray spectroscopy (EDX), UV- visible spectroscopy (UV-vis), Atomic Absorption Spectroscopy (AAS) and Fourier-transform infrared spectroscopy (FT-IR) techniques were used to observe the purity and surface functional groups of the samples. Spectra peaks at 440-458 cm-1 and 364-370 nm confirmed the presence of ZnO in the samples by FT-IR and UV-vis, whereas AAS at 213.9 nm wavelength further confirmed elemental zinc with a percentage atomic weight of 71.37% as against 69.50%, 18.8% and 11.1% for Zinc, Oxygen and Carbon by EDX. Data from the antibacterial activity studies show an increase in inhibition rate as concentration of the ZnO NPs increases in concentration from 25-1000 ppm. ZnO NPs from the two extracts recorded the highest inhibition rate in Acinetobacter baumanni of approximately 88% and 49% using ZnCl2 and Zn(CH3COO)2∙2H2O respectively.

Keywords


  1. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., Daszak, P., (2008). “Global trends in emerging infectious diseases”, Nature, 451(7181): 990–993.
  2. Khan, S. T., Musarrat, J., Al-Khedhairy, A. A., (2016). “Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles, current status”, Colloids Surf B Biointerfaces, 146: 70–83.
  3. Kumar, R.., Umar, A., Kumar, G., Nalwa, H. S., (2017). “Antimicrobial properties of ZnO nanomaterials: a review”, Ceram Int., 43: 3940–3961.
  4. Yah, C. S., Simate, G. S., (2015). “Nanoparticles as potential new generation broad spectrum antibacterial agents”, DARU Journal of Pharmaceutical Sciences, 23(1): 43.
  5. Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L., Stout, D. A., (2017). “Antibacterial properties and toxicity from metallic nanomaterials”, International journal of nanomedicines, 12: 3941.
  6. Nowack, B., Bucheli, T. D., (2007). “Occurrence, behavior and effects of nanoparticles in the environment”, Environmental pollution, 150(1): 522.
  7. Bhattacharya, R., Mukherjee, P., (2008). “Biological properties of naked metal nanoparticles”, Advanced Drug Delivery Reviews, 60(11): 1289-1306.
  8. Sharma, V. K., Yngard, R. A., Lin, Y., (2009). “Silver nanoparticles: green synthesis and their antibacterial activities”, Advances in colloid and interface science, 145(1-2): 83-96.
  9. Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., Poinern, G. E. J., (2015). “Green synthesis of metallic nanoparticles via biological entities”, Materials, 8(11): 7278-7308.
  10. Stankic, S., Suman, S., Haque, F., Vidic, J., (2016). “Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties”, J. Nanobiotechnol., 14(1): 73.
  11. Nel, A., Xia, T., Mädler, L., Li, N., (2006). “Toxic potential of materials at the nanolevel”, Science, 311(5761): 622-627.
  12. Singh, B. N., Rawat, A. K. S., Khan, W., Naqvi, A. H., Singh, B. R., (2014). “Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids”, PLoS One, 9(9): 106937.
  13. Peralta-Videa, J. R., Huang, P. Y., Parsons, J., Zhao, L., Lopez-Moreno, L., Hernandez-Viezcas, J. A., Gardea-Torresdey, J. L., (2016). “Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?”, Nanotechnol Environ Eng., 1(1): 4.
  14. Hu, S-H., Chen, Y-C., Hwang, C-C., Peng, C-H., Gong, D-C., (2010). “Development of a wet chemical method for the synthesis of arrayed ZnO nanorods”, J. Alloy. Comp., 500 (2): L17–L21.
  15. Wang, A., Ng, H. P., Xu, Y., Li, Y., Zheng, Y., Yu, J., Han, F., Peng, F., Fu, L., (2014). “Gold nanoparticles: synthesis, stability test, and application for the rice growth”, J. Nanomater., Article ID 451232.
  16. Chen, Y., Zhang, C., Huang, W., Situ, Y., Huang, H., (2015). “Multimorphologies nano-ZnO preparing through a simple solvothermal method for photocatalytic application”, Mater. Lett., 141: 294–297.
  17. Tien, H. N., Khoa, N., Hahn, S. H., Chung, J. S., Shin, E. W., Hur, S. H., (2013).One-pot synthesis of a reduced graphene oxide – zinc oxide sphere composite and its uses as a visible light photocatalyst”, Chem. Eng. J., 229: 126–133.
  18. Khorsand, Z. A., Wang, H. Z., Yousefi, R., Moradi, G. A., Ren, Z. F., (2013). “Sonochemical synthesis of hierarchical ZnO nanostructures”, Ultrason. Sonochem., 20 (1): 395–400.
  19. Omri, K., Najeh, I., Dhahri, R., El Ghoul, J., El mir, L., (2014). “Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol-gel method”, Microelectron. Eng., 128: 53–58.
  20. Khorsand, Z. A., Abrishami, M. E., Abd Majidi, W. H., Yosefi, R., Hosseini, S. M., (2011). “Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method”, Ceram. Inter., 37(1): 393–398.
  21. Wang, Y., Zhang, C., Bi, S., Luo, G., (2010). “Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor”, Powder Technol., 202(1-3): 130–136.
  22. Sundrarajan, M., Ambika, S., Bharathi, K., (2015). “Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria”, Adv. Powder Technol., 26: 1294-99.
  23. Olad, A., Ghazjahaniyan, F., Nosrati, R., (2018). “A Facile and Green Synthesis Route for the Production of Silver Nanoparticles in Large Scale”, Int. J. Nanosci. Nanotechnol., 14(4): 289-296.  
  24. Geoprincy, G., Vidhya srri, B. N., Poonguzhali, U., Nagendra, N. G., Renganathan, S., (2014). “A review on green synthesis of silver nanoparticles”, Asian J. Pharm. Clin. Res., 6(1): 8–12.
  25. Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S., (2016). “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise”, J. Adv Res., 7(1): 17–28.
  26. Soltanabad, M. H., Bagherieh-Najjar, M. B., Baghkheirati, E. K., Mianabadi, M., (2018). “Ag-Conjugated Nanoparticle Biosynthesis Mediated by Rosemary Leaf Extracts Correlates with Plant Antioxidant Activity and Protein Content”, Int. J. Nanosci. Nanotechnol., 14(4): 319-325
  27. Ghanbari, M., Bazarganipour, M., Salavati-Niasari, M., (2017). “Photodegradation and removal of organic dyes using cui nanostructures, green synthesis and characterization”, Separation and Purification Technology, 173: 27-36,
  28. Mohammadi-Aloucheh, R., Habibi-Yangjeh, A., Bayrami, A., Latifi-Navid, S., Asadi, A., (2018). “Enhanced anti-bacterial activities of ZnO nanoparticles and ZnO/CuO nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract”, Artificial Cells, Nanomedicine, and Biotechnology, 46(1): 1200-1209.
  29. Santhoshkumar, J., Kumar, V. S., Rajeshkumar, S., (2017). “Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen”, Resource-Efficient Technologies, 3, 459–465.
  30. Fatimah, I., Aftrid, Z. H. V. I., (2019). “Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus tricolor L.) leaf extract”, Green Chem. Lett. and Revs., 12(1): 25–30.
  31. Umar, H., Kavaz, D., Rizaner, N., (2019). “Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines”, Int. J. Nanomed., 14: 87–100
  32. Rotimi, L, Ojemaye, M. O., Okoh, O. O., Sadimenko, A., Okoh, A. I., (2019). Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle, Green Chem. Lett and Revs., 12(1): 61–68
  33. Droepenu, E. K., Asare, E. A., (2019). “Morphology of green synthesized ZnO nanoparticles using low temperature hydrothermal technique from aqueous Carica papaya extract”, Nanoscience and Nanotechnology, 9(1): 29-36.
  34. Divya, M. J., Sowmia, C., Joona, K., Dhanya, K. P., (2013).Synthesis of zinc oxide nanoparticles from Hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity”, Res. J. Pharm. Biol. Chem., 4(2): 1137-1142.
  35. Dobrucka, R., Dugaszewska, J., (2015). “Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract”, Saudi J. of Biological Sci., 23(4): 517-523.
  36. Shah, R. K., Boruah, F., Parween, N., (2015). “Synthesis and Characterization of ZnO Nanoparticles using Leaf Extract of Camellia sinesis and Evaluation of their Antimicrobial Efficacy”, Int. J. Curr. Microbiol. App. Sci., 4(8): 444-450
  37. Sundaramurthy, N., Parthiban, C., (2015). “Biosynthesis of copper oxide nanoparticles using Pyrus pyrifolia leaf extract and evolve the catalytic activity”, Int. Res. J. of Eng. and Technol. (IRJET), 2(6), 332-338.
  38. Reddy, L. S., Nisha, M. M., Joice, M., Shilpa, P. N., (2014). “Antibacterial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumonia”, Pharmaceutical biology, 52(11): 1388-1397.
  39. http://en.wikipedia.org/wiki/kolanut
  40. Jayeola, C. O., (2001). “Preliminary studies on the use of kolanuts (Cola nitida) for soft drink production”, J. Food Technol. Afr., 6(1): 25-26.
  41. Attfield, J., (1865). “On the food value of the kolanut – a new source of theine”, Pharm. J., 6: 457.
  42. Blades, M., (2000). “Functional foods or neutraceutical”, Nutr. Food Sci., 30(2): 73-75.
  43. Naczk, M., Shahidi, F., (2006). “Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis”, J. Pharm. Biomed. Anal., 41: 1523–1542.
  44. Umaru, I. J., Fasihuddin, B. A., Otitoju, O. O., Hauwa, A. U., (2018). “Phytochemical Evaluation and Antioxidant Properties of Three Medicinal Plants Extracts”, Med. & Anal. Chem. Int. J. Phytochem. Eval., 2(2): 1-8.
  45. Yang, K., Lin, D., Xing, B., (2009). “Interactions of humic acid with nanosized inorganic oxides”, Langmuir, 25(6): 3571–3576.
  46. Umaru, I. J., Fasihuddin, A. B., Zaini, B. A, Umaru, H. A., (2018b). “Antibacterial and cytotoxic actions of chloroform crude extract of Leptadenia hastata(pers)Decnee”, Clinical Medical Biochem., 4: 1-4.
  47. Shadrokh, Z., Yazdani, A., Eshghi, H., (2017). “Study on Structural and Optical Properties of Wurtzite Cu2ZnSnS4 Nanocrystals Synthesized via Solvothermal Method”, Int. J. Nanosci. Nanotechnol., 13(4): 359-366.  
  48. Divya, M. J., Sowmia, C., Joona, K., Dhanya, K. P., (2013). “Synthesis of zinc oxide nanoparticle from Hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity”, Res. J. Pharm. Biol. Chem. Sci., 4(2): 1137–1142.
  49. Fakhari, S., Jamzad, M., Fard, H. K., (2019). “Green synthesis of zinc oxide nanoparticles: a comparison”, Green Chem. Lett and Revs., 12(1): 19–24
  50. Geetha, A., Sakthivel, R., Mallika, J., Kannusamy, R., Rajendran, R., “Green synthesis of antibacterial zinc oxide nanoparticles using biopolymer Azadirachta indica Gum”, Orient. J. Chem., 2016; 32: 955-963.
  51. Zheng, Y., Fu, L., Han, F., Wang, A., Cai, W., Yu, J., Yang, J., Peng, F., (2015). “Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity”, Green Chem. Lett. and Revs., 8(2): 59–63.
  52. Daphedar, A., Taranath, T. C., (2018). “Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of Drimia indica (Roxb.) Jessop”, Caryologia., 71: 93-102.
  53. Khatami, M., Alijani, H. Q., Heli, H., Sharifi, I., (2018). “Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency”, Ceram. Int., 44: 15596-602.
  54. Anvekar, T. S., Chari, V. R., Kadam, H., (2017). “Green Synthesis of ZnO Nano Particles, its Characterization and Application”, Mater. Sci. Res. India, 14(2): 153-157.
  55. Gowsalya, V., Santhiya, E., Chandramohan, K., (2017). “Synthesis, characterization of ZnO nanoparticles from Thespesia populnea”, Indian J. Appl. Res., 7(10): 542-543.
  56. Shankar S, Rhim J W., (2017). “Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads”, Carbohydr Polym., 163: 137–145.
  57. Soosen, S. M., Lekshmi, B., George, K. C., (2009). “Optical properties of ZnO nanoparticles”, Academic Rev., 57-65.
  58. Nagarajan, S., Arumugam, K. K., (2013). “Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar”, India. J. Nanobiotechnol., 11: 39.
  59. Divyapriya, S., Sowmia, C., Sasikala, S., (2014).Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya koenigi”, World J. Pharm Sci., 3(12): 1635-1645.