Hydrothermal Synthesis of Cobalt ‎Disulfide Nanostructures and Adsorption ‎Kinetics, Isotherms, and Thermodynamics ‎of Tetracycline‎

Document Type : Research Paper


Department of Analytical Chemistry, College of Science, University of Tehran, Tehran, Iran.‎


   Surfaces of synthesis cobalt disulfide has high electron density that could interact with polycyclic aromatic compounds by π-π stacking. Cobalt disulfide was synthesized with the hydrothermal method and characterized by field emission scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray. Using tetracycline as a model analyte, the batch adsorption experiments were carried out in order to investigate the adsorption capacity of the adsorbent. It was revealed that pseudo-second-order kinetic model can better describe the adsorption kinetic. Furthermore, the equilibrium adsorption data were congruous with the model Langmuir with maximum adsorption capacity of 163.93 mg g-1.


  1. Ji, L., Liu, F., Xu, Z., et al., (2010). “Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro-and mesoporous carbons”, Environ Sci Technol., 44:3116–3122.
  2. Eissen, M., Backhaus, D., (2011). “Pharmaceuticals in the environment: an educational perspective”, Environ Sci Pollut Res., 18: 1555–1566.
  3. Paseban, N., Ghadam, P., Pourhosseini, PS., (2019). “The Fluorescence Behavior and Stability‎ of AgNPs Synthesized by Juglans Regia‎ Green Husk Aqueous Extract”, Int. J. Nanosci Nanotechnol., 15: 117–126.
  4. Sun, H., Shi, X., Mao, J., Zhu, D., (2010). “Tetracycline sorption to coal and soil humic acids: an examination of humic structural heterogeneity”, Environ Toxicol Chem., 29: 1934–1942.
  5. Dudhane, A, A., Waghmode, SR., Dama, LB., et al., (2019). “Synthesis and Characterization of Gold‎ Nanoparticles using Plant Extract of‎ Terminalia arjuna with Antibacterial‎ Activity”, Int. J. Nanosci Nanotechnol., 15: 75–82.
  6. Thiele. Bruhn, S., (2003). “Pharmaceutical antibiotic compounds in soils a review”, J. Plant Nutr Soil Sci., 166: 145–167.
  7. Li, Z., Schulz, L., Ackley, C., Fenske, N., (2010). “Adsorption of tetracycline on kaolinite with pH-dependent surface charges”, J. Colloid Interface Sci., 351: 254–260.
  8. Boleas, S., Alonso, C., Pro, J., et al., (2005). “Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system and influence of manure co-addition”, J. Hazard Mater., 122: 233–241.
  9. Thiele. Bruhn, S., Beck, I, C., (2005). “Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass”, Chemosphere, 59: 457–465.
  10. Halling. Sørensen, B., (2001). “Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents”, Arch Environ Contam Toxicol., 40: 451–460.
  11. Ji, L., Chen, W., Bi, J., et al., (2010). “Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry”, Environ Toxicol Chem., 29: 2713–2719.
  12. Furusawa, N., (2003). “Isolation of tetracyclines in milk using a solid-phase extracting column and water eluent”, Talanta., 59: 155–159.
  13. Rudek, M, A., March, CL., Bauer, K, S., et al., (2000). “High-performance liquid chromatography with mass spectrometry detection for quantitating COL-3, a chemically modified tetracycline, in human plasma”, J. Pharm Biomed Anal., 22: 1003–1014.
  14. Monser, L., Darghouth, F., (2000). “Rapid liquid chromatographic method for simultaneous determination of tetracyclines antibiotics and 6-epi-doxycycline in pharmaceutical products using porous graphitic carbon column”, J. Pharm Biomed Anal., 23: 353–362.
  15. Wang, Y., Xu, X., Han, J., Yan, Y., (2011). “Separation/enrichment of trace tetracycline antibiotics in water by [Bmim] BF4 (NH4)2SO4 aqueous two-phase solvent sublation”, Desalination. 266: 114–118.
  16. Chang, P. H., Li, Z., Yu, T. L., et al., (2009). “ Sorptive removal of tetracycline from water by palygorskite”, J. Hazard Mater., 165: 148–155.
  17. Zhang, L., Song, X., Liu, X., et al., (2011). “Studies on the removal of tetracycline by multi-walled carbon nanotubes”, Chem Eng J., 178: 26–33.
  18. Gu, C., Karthikeyan, K. G., (2005). “Interaction of tetracycline with aluminum and iron hydrous oxides”, Environ Sci Technol., 39: 2660–2667.
  19. Gao, Y., Li, Y., Zhang, L., et al., (2012). “Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide”, J Colloid Interface Sci., 368: 540–546.
  20. Turku, I., Sainio, T., Paatero, E., (2007). “Thermodynamics of tetracycline adsorption on silica”, Environ Chem Lett., 5: 225–228.
  21. Li, Z., Chang, P. H., Jean, J. S., et al., (2010). “Interaction between tetracycline and smectite in aqueous solution”, J. Colloid Interface Sci., 341: 311–319.
  22. Wang, Y. J., Jia, D. A., Sun, R. J., et al., (2008). “Adsorption and cosorption of tetracycline and copper (II) on montmorillonite as affected by solution pH”, Environ Sci Technol., 42: 3254–3259.
  23. Caroni, A., De, Lima. CRM, Pereira. MR, Fonseca J. L. C., (2009). “The kinetics of adsorption of tetracycline on chitosan particles”, J. Colloid Interface Sci., 340: 182–191.
  24. Chen, W. R., Huang, C. H., (2010). “Adsorption and transformation of tetracycline antibiotics with aluminum oxide”, Chemosphere, 79: 779–785.
  25. Choi, K. J., Kim, S. G., Kim, S. H., (2008). “Removal of antibiotics by coagulation and granular activated carbon filtration”, J. Hazard Mater., 151: 38–43.
  26. Chao, Y., Zhu, W., Chen, F., et al., (2014). “Commercial diatomite for adsorption of tetracycline antibiotic from aqueous solution”, Sep Sci Technol., 49: 2221–2227.
  27. Chao, Y., Zhu, W., Yan, B., et al., (2014). “Macro porous polystyrene resins as adsorbents for the removal of tetracycline antibiotics from an aquatic environment”, J. Appl. Polym. Sci., 131: 1–8.
  28. Chao, Y., Zhu, W., Chen, J., et al., (2014). “Development of novel graphene-like layered hexagonal boron nitride for adsorptive removal of antibiotic gatifloxacin from aqueous solution”, Green. Chem. Lett. Rev., 7: 330–336.
  29. Chao, Y., Zhu, W., Ye, Z., et al., (2015). “Preparation of metal ions impregnated polystyrene resins for adsorption of antibiotics contaminants in aquatic environment”, J. Appl. Polym. Sci., 132: 1 - 9.
  30.  Lv, J. M., Ma, Y. L; Chang, X., Fan, S. B., (2015). “Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X”, Chem. Eng. J., 273: 247–253.
  31. Sánchez. Polo, M; Velo. Gala, I., López-Peñalver, J. J., Rivera. Utrilla, J., (2015). “Molecular imprinted polymer to remove tetracycline from aqueous solutions”, Microporous Mesoporous Mater., 203: 32–40.
  32. Wang, D. W., Wang, Q. H., Wang, T. M., (2010). “Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method”, Cryst. Eng. Comm., 12: 755–761.
  33. Kong, D., Cha, J. J., Wang, H., et al., (2013). “First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction”, Energy Environ Sci., 6: 3553–3558.
  34. Kong, D., Wang, H., Lu, Z., Cui, Y., (2014). “CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction”, J. Am. Chem. Soc., 136: 4897–4900.
  35. Mahmood, N., Zhang, C., Jiang, J., et al., (2013). “Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction”, Chem. Eur. J., 19: 5183–5190.
  36. Chen, H. W; Kung, C. W., Tseng, C. M., et al., (2013). “Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode”, J. Mater. Chem. A., 1: 13759–13768.
  37. Gu, Y., Xu, Y; Wang, Y., (2013). “Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage”, ACS Appl. Mater. Interfaces, 5: 801–806.
  38. Tang, J., Shen, J., Li, N., Ye, M., (2014). “A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors”, Ceram. Int., 40: 15411–15419
  39. Faber, MS; Dziedzic, R., Lukowski, M. A., et al., (2014). “High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures”, J. Am. Chem. Soc., 136: 10053–10061.
  40. Bi, E., Chen, H., Yang, X., et al., (2014). “A quasi core--shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells”, Energy Environ Sci., 7: 2637–2641.
  41. Yan, J. M., Huang, HZ; Zhang, J., et al., (2005). “A study of novel anode material CoS2 for lithium ion battery”, J. Power Sources., 146: 264–269.
  42. Xing, J. C., Zhu, Y. L., Zhou, Q. W., et al., (2014). “Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors”, Electrochim Acta., 136: 550–556.
  43. Van Doorslaer, X., Demeestere, K., Heynderickx, P. M., et al., (2011). “UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption”, Appl. Catal. B. Environ., 101: 540–547.
  44. Li, B., Zhang, T., (2013). “Removal mechanisms and kinetics of trace tetracycline by two types of activated sludge treating freshwater sewage and saline sewage”, Environ Sci. Pollut. Res., 20: 3024–3033.
  45. Yang, W., Lu, Y., Zheng, F., et al., (2012). “Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube”, Chem. Eng. J., 179: 112–118.
  46. Karimi, M. A., Ghasemi, M. H., Aghagoli, M. J., Beyki, M. H., (2016). “Preconcentration of cobalt ions by a melamine-modified cellulose@ MWCNT nanohybrid”, Microchim Acta., 183: 2949-2955.
  47. Beyki, M. H., Bayat, M., Shemirani, F., (2016). “Fabrication of core–shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye”, Bioresour Technol., 218:326–334. https://doi.org/10.1016/j.biortech.2016.06.069.
  48. Beyki. M. H., Feizi, F., Shemirani, F., (2016). “Melamine-based dendronized magnetic polymer in the adsorption of Pb(II) and preconcentration of rhodamine B”, React Funct Polym., 103:81–91. https://doi.org/10.1016/j.reactfunctpolym.2016.04.006.
  49. Beyki, M. H., Bayat, M., Miri, S., et al., (2014). “Synthesis, characterization, and silver adsorption property of magnetic cellulose xanthate from acidic solution: Prepared by one step and biogenic approach”, Ind Eng Chem Res., 53:14904–14912. https://doi.org/10.1021/ie501989q.
  50. Hossein Beyki, M., Shirkhodaie, M., Karimi, M. A; et al., (2016). “Green synthesized Fe3O4 nanoparticles as a magnetic core to prepare poly 1, 4 phenylenediamine nanocomposite: employment for fast adsorption of lead ions and azo dye”, Desalin. Water. Treat, 57: 1–12.