Modelling of Cylindrical Contact Theories ‎of Hertz and JKR for the Manipulation of ‎Biological Micro/Nanoparticles

Document Type : Research Paper

Authors

Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and ‎Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, ‎P.O. Box 13114-16846 Tehran, Iran.‎

Abstract

   This paper deals with the development and modeling of cylindrical contact theories and also the simulation of contact forces to be applied in the manipulation of various biological micro/nanoparticles by means of the AFM. First, the simulation of contact forces in four environments has been carried out, which are the most commonly used fluid in biomanipulation. Then, the spherical and cylindrical contact models of Hertz and JKR have been compared for the nanoparticles of gold and DNA, and the developed cylindrical models have been validated by comparing the cylindrical contact results with the existing spherical contact results. The biomanipulation of rod-shaped micro/nanoparticles in different biological environments have been modeled and the results have been compared. The modeling results indicated that the JKR cylindrical model, developed in this article, had less deformation for gold nanoparticles compared with biological nanoparticles, which was justifiable in view of the considered particles’ mechanical properties.

Keywords


  1. Resch, R., Bugacov, A., Baur, C., Koel, B., Madhukar, A., Will, P. (1998). “Manipulation of Nanoparticles Using Dynamic Force Microscopy: Simulation and Experiments”, Applied Physics A-Materials Science & Processing, 67: 265-271.
  2. Decossas, S., Mazen, F., Baron, T., Bremond, G., Souifi, A. (2003). “Atomic Force Microscopy Nanomanipulation of Silicon Nanocrystals for Nanodevice Fabrication”, Nanotechnology, 14: 1272-1278.
  3. Decossas, S., Patrone, L., Bonnot, A., Comin, F., Derivaz, M., Barski, A., Chevrier, J. (2003). “Nanomanipulation by Atomic Force Microscopy of Carbon Nanotubes on Nanostructured Surface”, Surface Science, 543: 57-62.
  4. Korayem, M. H., Hefzabad, R. N., Taheri, M., Mahmoodi, Z. (2014). “Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy”. International Journal of Nanoscience and Nanotechnology, 10(1): 1-12.
  5. Du, E., Cui, H., Zhu, Z. (2006). “Review of Nanomanipulators for Nanomanufacturing”, International Journal of Nanomanufacturing, 1: 83-104
  6. Kim, D. H., Park, J., Kim, M, K., Hong, K, S. (2008). “AFM-based identification of the dynamic properties of globular proteins: simulation study”, Journal of Mechanical Science and Technology, 22: 2203-2212.
  7. Kwon, E, Y., Kim, Y, T., Kim, D. E. (2009). “Investigation of penetration force of living cell using an atomic force microscope”, Journal of Mechanical Science and Technology, 23, pp. 1932-1938
  8. Falvo, M.R. Superfine, R. (2000). “Mechanics and Friction at the Nanometer Scale”, Journal of Nanoparticle Research, 2: 237-248.
  9. Tafazzoli, A. Sitti, M. (2004). “Dynamic Models of Nano-Particle Motion During Nanoprobe Based Nanomanipulation”, Proc. of 4th IEEE Conf. in Nanotechnology, Germany.
  10. Korayem, M. H., Rastegar, Z. (2012). “Application of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation”, International Journal of Nanoscience and Nanotechnology, 8(1) : 35-50.
  11. Korayem, M. H., Rastegar, Z., Korayem, A. H., Heidari, A. E. (2013). “Modeling of air relative humidity effect on adhesion force in manipulation of nano-particles and its application in AFM”. International Journal of Nanoscience and Nanotechnology, 9(1) :39-50.
  12. Korayem, M. H., Khaksar, H., Taheri m., (2014). “Simulating the impact between particles with applications in nanotechnology fields (identification of properties and manipulation)”, International Nano Letters, 4: 121-127.
  13. Korayem, M. H., Sadeghzadeh, S. (2012). “Dynamics of macro–nano mechanical systems; fixed interfacial multiscale method”. International Journal of Nanoscience and Nanotechnology, 8(4): 227-246.
  14. Zhupanska, O. I. (2012). “Adhesive full stick contact of a rigid cylinder with an elastic half-space”, International Journal of Engineering Science, 55: 54-65.
  15. Korayem, M. H., Khaksar, H., Taheri, M. (2013). “Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope”, Journal of Applied Physics, 114(18): 183715.
  16. Marina R., Israelachvili. J. N. (2008). “Surface Forces and Nanorheology of Molecularly Thin Films”, Springer Berlin Heidelberg, Chapter 13.
  17. Fabio, L. L., Carolina, C. B., Alessandra, L. R. D., Ervino C. Z., Osvaldo N. O. (2012). “Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy”, International Journal of Molecular Sciences, 13: 12773-12856.
  18. Hertz, H. (1881). “Über die Berührung fester elastischerKörper”, Journal für die reine und angewandteMathematik, 92: 156-171.
  19. Jin, F., Guo, X. (2010). “Non-slipping adhesive contact of a rigid cylinder on an elastic power-law graded half-space”, International Journal of Solids and Structures, 47: 1508- 1521.
  20. Johnson, K. L., Kendall, K. Roberts, A. D. (1971). “Surface energy and the contact of elastic solid”, Proceedings of the Royal Society of London A, 324: 301-313.
  21. Chen, S., Wang, T. (2006). “General solution to two-dimensional nonslipping JKR model with a pulling force in an arbitrary direction”, Journal of Colloid and Interface Science, 302: 363-369.
  22. Arsuagaa, J., Tan, R. K., Vazquez, M., Sumners, D. W., Harvey, S. C. (2002). “Investigation of viral DNA packaging using molecular mechanics models”, Biophysical Chemistry, 101: 475-484.