A Novel Design of Quaternary Inverter ‎Gate Based on GNRFET

Document Type : Research Paper

Authors

1 Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, ‎Iran.‎

2 Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.‎

Abstract

   This paper presents a novel design of quaternary logic gates using graphene nanoribbon field effect transistors (GNRFETs). GNRFETs are the alternative devices for digital circuit design due to their superior carrier-transport properties and potential for large-scale processing. In addition, Multiple-valued logic (MVL) is a promising alternative to the conventional binary logic design. Saving power and reduced chip area is the reason for simplicity. The first design is a resistive-load GNRFET-based quaternary inverter gate. The channel length is 15 nm. This circuit works with a 0.9V supply voltage at room temperature. For optimizing the first design, resistors are replaced with transistors in the second design. Simulation results using HSPICE indicate that in the second proposed design provides 61.1% reduction in power-delay product (PDP) that of first proposed. These results can be used in MVL design based on nano devices.

Keywords


  1. Gogotsi, Y., (2015). “Not just graphene: The wonderful world of carbon and related nanomaterials”, MRS Bulletin, 40: 1110-1121.
  2. Ghozatloo, A., Yazdani, A., Shariaty-Niassar, M., (2017). “Morphology Change and Structural ‎Evaluation of Carbon Nanostructures”, International Journal of Nanoscience and Nanotechnology, 13: 97-104.
  3. Bhimanapati, G. R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., ..., Liang, L., (2015). “Recent advances in two-dimensional materials beyond graphene”, Acs Nano, 9: 11509-11539.
  4. Utkan, G., Ozturk, T., Duygulu, O., Tahtasakal, E., Denizci, A.A., (2019). “Microbial Reduction of Graphene Oxide by ‎Lactobacillus Plantarum”,   International Journal of Nanoscience and Nanotechnology, 15: 127-136.
  5. Vicarelli, L., Heerema, S. J., Dekker, C., Zandbergen, H. W., (2015). “Controlling defects in graphene for optimizing the electrical properties of graphene  nanodevices”, ACS nano, 9: 3428-3435.
  6. Reddy, D., Register, L. F., Carpenter, G. D., Banerjee, S. K., (2011). “Graphene field-effect transistors”, Journal of Physics D: Applied Physics, 44: 313001.
  7.  Gholipour, M.,   Masoumi, N., (2014).  “Graphene nanoribbon crossbar architecture for low power and dense circuit implementations”, Microelectronics Journal, 45: 1533-1541.
  8. Farazas, A., Mavropoulos, A., Christofilos, D., Tsiaousis, I., Tsipas, D., (2018). “Ultrasound Assisted Green Synthesis and Characterization of Graphene Oxide”, International Journal of Nanoscience and Nanotechnology, 14: 11-17.
  9. Rabieefar, F., Dideban, D., (2019).  “Utilizing Graphene Nano-Ribbon Transistor in Data Converters: A Comparative Study”, ECS Journal of Solid State Science and Technology, 8: M30-M37.
  10. Akbar, F., Kolahdouz, M., Larimian, S., Radfar, B., Radamson, H. H., (2015). “Graphene   synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing”, Journal of Materials Science: Materials in Electronics, 26: 4347-4379.
  11. Nayeri, M., Keshavarzian, P., Nayeri, M., (2019). “High-Speed Penternary Inverter Gate Using GNRFET”, Journal of Advances in Computer Research, 10: 1-9
  12. Celis, A., Nair, M. N., Taleb-Ibrahimi, A., Conrad, E. H., Berger, C., De Heer, W. A., Tejeda, A., (2016). “Graphene nanoribbons: fabrication, properties and devices”, Journal of Physics D: Applied Physics, 49: 143001.
  13. Choudhury, M. R., Yoon, Y., Guo, J, Mohanram, K., (2011). “Graphene nanoribbon FETs: Technology exploration for performance and reliability”, IEEE transactions on nanotechnology, 10: 727-736.
  14. Chen, Y. Y., Sangai, A., Rogachev, A., Gholipour, M., Iannaccone, G., Fiori, G., Chen, D., (2015). “A SPICE-compatible   model of MOS- type graphene nano-ribbon field-effect transistors enabling gate-and circuit-level delay and power analysis under process variation”, IEEE Transactions on Nanotechnology, 14: 1068-1082.
  15. Marmolejo-Tejada, J. M., Velasco-Medina, J., (2016). “Review on graphene nanoribbon devices for logic applications”, Microelectronics Journal, 48: 18-38.
  16. Hur, J. H., Kim, D. K., (2018). “Theoretical investigation of performance of armchair graphene nano ribbon field effect transistors”, Nanotechnology,29: 185202.
  17.  Sharifi, F., Moaiyeri, M.H., Navi, K., Bagherzadeh, N., (2015). “Robust and energy-efficient carbon nanotube FET-based MVL gates: A novel design approach”, Microelectronics Journal, 46: 1333-1342.
  18. Bajec, I. L., Zimic, N., Mraz, M., (2006). “The ternary quantum-dot cell and ternary logic”, Nanotechnology, 17: 1937.
  19. Raghavan, B. S., Bhaaskaran, V. K., (2017). “Design of novel Multiple Valued Logic (MVL)

 

 

 

 

 

 

 

circuits”, In Nextgen Electronic Technologies: Silicon to Software (ICNETS2), International      Conference on (. 371-378). IEEE.

  1. Sahoo, S. K., Akhilesh, G., Sahoo, R., Muglikar, M., (2017). “High-Performance Ternary Adder Using CNTFET”, IEEE Transactions on Nanotechnology, 16: 368-374.
  2. Moaiyeri, M. H., Mirzaee, R. F., Doostaregan, A., Navi, K., Hashemipour, O., (2013). “A universal method for designing low-power carbon   nanotube FET-based multiple-valued logic circuits”,   IET Computers & Digital Techniques, 7: 167-181.
  3. Raychowdhury, A., Roy, K., (2005). “Carbon-nanotube-based voltage-mode multiple-valued logic design”, IEEE Transactions on Nanotechnology, 4: 168-179.
  4. Lin, S., Kim, Y. B., Lombardi, F., (2011). “CNTFET-based design of ternary logic gates and arithmetic circuits”, IEEE transactions on nanotechnology, 10: 217-225.
  5.  Moaiyeri, M. H., Rahi, A., Sharifi, F., Navi, K., (2017). “Design and evaluation of energy-efficient carbon nanotube FET-based quaternary minimum and maximum circuits”,   Journal of applied research and technology, 15: 233-241.
  6. Moaiyeri, M. H., Sedighiani, S., Sharifi, F., Navi, K., (2016). “Design and analysis of carbon nanotube FET based quaternary full adders”, Frontiers of Information Technology & Electronic Engineering, 17: 1056-1066.
  7. Kim, Y. J., Kim, S. Y., Noh, J., Shim, C. H., Jung, U., Lee, S. K., ... Lee, B. H., (2016). “Demonstration of complementary ternary graphene field-effect transistors”, Scientific reports, 6, 39353.
  8.  Mahani, A. T., Keshavarzian, P., (2017). “A novel energy-efficient and high speed full adder using CNTFET”,   Microelectronics Journal, 61: 79-88.
  9. Sharifi, F., Moaiyeri, M. H., Navi, K., Bagherzadeh, N., (2016). “Ultra-low-power carbon nanotube FET-based quaternary logic gates”, International Journal of Electronics, 103: 1524-1537.
  10. Ebrahimi, S. A., Reshadinezhad, M. R., Bohlooli, A., Shahsavari, M., (2016). “Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits”, Microelectronics Journal, 53: 156-166.
  11. Sharifi, F., Moaiyeri, M. H., Navi, K., Bagherzadeh, N., (2015). “Quaternary full adder cells based on carbon nanotube FETs”,   Journal ofComputational Electronics, 14: 762-772.
  12. Keshavarzian, P., Navi, K., (2009). “Universal ternary logic circuit design through carbon nanotube technology”, International Journal of Nanotechnology, 6: 942-953.
  13.  Sharifi, F., Moaiyeri, M. H., Navi, K., Bagherzadeh, N., (2016). “Ultra-low-power carbon nanotube FET-based quaternary logic gates”, International Journal of Electronics, 103: 1524-1537.
  14. Illinois University GNRFET model website. Illinois University, Available: http://dchen.ece.illinois.edu/ tools.html
  15. Doostaregan, A., Abrishamifar, A., (2019). “A New Method for Design of CNFET-Based Quaternary Circuits”, Circuits, Systems, and Signal Processing, 38: 2588-2606.
  16.  Liang, J., Chen, L., Han, J., Lombardi, F., (2014). “Design and evaluation of multiple valued logic gates using pseudo N-type carbon nanotube FETs”,   IEEE Transactions on Nanotechnology, 13: 695-708.