Essential Oils Nanoemulsions: ‎Preparation, Characterization and Study of ‎Antibacterial Activity against Escherichia ‎Coli

Document Type : Research Paper


Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, ‎Markazi, Iran.‎


   This research studies the application of essential oil nanoemulsion as herbal medicine instead of using antibiotics and chemicals. Thyme, shirazi thyme and rosemary essential oils were selected as herbal drugs. Essential oil nanoemulsions with Tween 80 and/or Sodium dodecyl sulfate (SDS) surfactants were prepared and investigated. Physicochemical characterizations such as hydrodynamic diameter, pH, conductivity, optical clarity and antibacterial activity against gram negative bacteria, E.coli, have been studied. Morphology of the nanoemulsions was evaluated by transmission electron microscope (TEM). Nanoemulsions prepared with the mixture of SDS−Tween 80 had particle diameters significantly smaller than those prepared with Tween 80 (2-11.7 nm in comparison with 189-200 nm). Formulated nanoemulsions had long-term stability at ambient temperature; as there were little changes in droplet diameter after storage for 2 months. MTT assay showed non-toxicity of prepared nanoemulsions. Antibacterial activity against E.coli was also studied by counting the number of survival bacteria in a broth medium. The in vitro test indicated efficacy of all prepared emulsions on E.coli, especially those containing thyme essential oil. The results suggested that the formulated nanoemulsions might be used as potential carrier in food, pharmaceutical and drug delivery systems.


  1. Davidson, P., (2005). "Food antimicrobials: Back to nature", in First International Symposium on Natural Preservatives in Food Systems.
  2. Bauer, K., Garbe, D., Surburg, H., (2008). "Common fragrance and flavor materials: preparation, properties and uses", John Wiley & Sons.
  3. Gaysinsky, S., Davidson, P., McClements, D., Weiss, J., (2008)."Formulation and Characterization of Phyto-Phenol-Carrying Antimicrobial Micro emulsions", Food Bio. physics., 3(1): 54-65.
  4. Chang, Y., McLandsborough, L., McClements, D. J., (2012). "Physical Properties and Antimicrobial Efficacy of Thyme Oil Nanoemulsions: Influence of Ripening Inhibitors", J. Agric. Food Chem., 60: 12056-12063.
  5. Gaysinsky, S., (2007). "Emulsions and micro emulsions as antimicrobial delivery systems", University of Massachusetts, PhD Dissertation, Amherst.
  6. Tawakkal, I. A., Cran, M. J., Bigger, S. W., (2016). "Release of thymol from poly(lactic acid)-based antimicrobial films containing kenaf fibres as natural filler", LWT - Food Sci. Technol., 66: 629-637.
  7. Galotto, M. J., de Dicastillo, C. L., Torres, A., Guarda, A., (2016). "Thymol: Use in Antimicrobial Packaging", Antimicrobial Food Packaging, Academic Press, 553-562.
  8. Manikandan, R., Chandrasekar, K., Srivastava, S. K., (2012). "Life form analysis of the family Lamiaceae in Jammu & Kashmir", Phytotaxonomy., 12: 7-19.
  9. "World Checklist of Selected Plant Families," Kew Sceience, (2018). [Online]. Available:

10. Sajed, H., Sahebkar, A. H., Iranshahi, M., (2013). "Zataria multiflora Boiss. (Shirazi thyme)—An ancient condiment with modern pharmaceutical uses", J. Ethnopharmacol., 145(3): 686-698.

11. Taherpour, A. , Hashemi, A. , Fallah, F., Erfani, Manesh S., Taki, E., (2014). "Evaluation of Zenian and Avishan-e Shirazi Antibacterial Activity against Vibrio cholerae Strains",  J. Med. Bacteriol., 2(1): 17-21.

12. Visentin, V., Rodríguez-Rojo, S., Navarrete, A., Maestri, D., Cocero, M. J., (2012). "Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process",  J. Food Eng., 109(1): 9-15.

13. Oluwatuyi, M., Kaatz, G. W., Gibbons, S., (2004). "Antibacterial and resistance modifying activity of Rosmarinus officinalis", Phyto Chemistry., 65: 3249-54.

14. Shokri, A., Saeedi, M., Fakhar, M., Morteza-Semnani, K., Keighobadi, M., Hosseini, Teshnizi S., Kelidari, H., Sajadi, S., (2017). "Antileishmanial Activity of Lavandula angustifolia and Rosmarinus Officinalis Essential Oils and Nano-emulsions on Leishmania major (MRHO/IR/75/ER)",  Iran J. Parasitol., 12(4): 622-631.

15. Hernández, M. D., Sotomayor, J. A., Hernández, A., Jordán, M. J., (2016). "Rosemary (Rosmarinus officinalis L.", in Essential Oils in food preservasion flavor and safety, 677-688.

16. “11 Amazing Benefits of Rosemary Oil," (2018). [Online]. Available:

17. Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A., McClements, D. J., (2016). "Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli",  Food Chem., 194: 410-415.

18. Xue, J., Zhong, Q., (2014). "Thyme Oil Nanoemulsions Coemulsified by Sodium Caseinate and Lecithin", J.Agric. Food Chem.,62: 9900-9907.

19. Rao, J., McClements, D. J., (2011). "Food-grade micro emulsions, nanoemulsions and emulsions: Fabrication from sucrose mono palmitate & lemon oil",  Food Hydrocoll., 25: 1413-1423.

20. Relkin, P., Jung, J. M., Ollivon, M., (2009). "Factors affecting vitamine degradation in oil-in-water nano emulsions", J. Therm. Anal. Calorim., 98: 13-18.

21. Donsì, F., Annunziata, M., Sessa, M., Ferrari, G., (2011). "Nano encapsulation of essential oils to enhance their antimicrobial activity in foods",  LWT - Food Sci. Technol., 44: 1908-1914.

22. Weiss, J., Gaysinsky, S., Davidson, M., McClements, J., (2009). "Nanostructured encapsulation systems: food antimicrobials", Global issues in food science and technology, 425-479.

23. Xuem J., (2015). "Essential Oil Nanoemulsions Prepared with Natural Emulsifiers for Improved Food Safety", University of Tennessee, PhD Dissertation, Knoxville.

24. Ziani, K. H., Chang, Y., McLandsborough, L., McClements, D. J., (2011). "Influence of Surfactant Charge on Antimicrobial Efficacy of Surfactant-Stabilized Thyme Oil Nanoemulsions", J. Agric. Food Chem., 59: 6247-6255.

25. Silva, H. D., Cerqueira, M. A., Vicente, A. A. , (2015). "Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions",  J. Food Eng.,167: 89-98.

26. Wooster, T. J., Golding, M., Sanguansri, P., (2008). "Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability", Langmuir., 24: 12758-12765.

27. Nirmala, M. J., Allanki, S., Mukherjee, A. , Chandrasekaran, N., (2013). "Azithromycin: Essential Oil Based Nanoemulsion Drug Delivery Systems", Int. J. Pharm .Sci., 5(4): 236-238.

28. Kerwin, B. A., (2008). "Polysorbates 20 and 80 used in the formulation of protein bio therapeutics: structure and degradation pathways", J. Pharm. Sci., 97: 2924-2935.

29. Merk Milipore Co., (2018). "Tween 80 MSDS", [Online]. Available:,MDA_CHEM-822187.

30. U.S. National Library of Medicine, "National Center for Biotechnology Information ", OPEN CHEMISTRY DATABASE," [Online]. Available: #section=Top

31. Askerm D., Weissm J., McClementsm D. J., (2011). "Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides", J. Agric. Food Chem., 59(3): 1041-1049.

32. Yousry, M. I., Sabrein, H. M. , Abd-El Baset, M., (2016). "Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM", Talanta., 155: 158-167.

33. Moradi, S., Fazlali, A., Hamedi, H., (2018). "Microwave-Assisted Hydro-Distillation of Essential Oil from Rosemary: Comparison with Traditional Distillation", Avicenna J. Med. Biotechnol., 10(1): 22-28.

  1. 34.  Mohammadi, S. Z., Khorasani-Motlagh, M., (2012). "Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microwave Method",  Int. J. Nanosci. Nanotechnol., 8(2): 87-92.

35. Ghosh, V., Mukherjeem, A., Chandrasekaran, N., (2013). "Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity", Ultrason Sonochem., 20(1): 338-344.

36. Saberi, A., Fang, Y., McClements, D. J., (2014). "Stabilization of Vitamin E-Enriched Nanoemulsions: Influence of Post-Homogenization Cosurfactant Addition",  J. Agric. Food Chem.., 62: 1625-1633.

37. Kaszuba, M. , (2015). "Malvern Dynamic Light Scattering Manual", Malvern Instruments.

38. Shakeel, F., Ramadan, W., Ahmed, M. A., (2019). "Investigation of true nanoemulsions for transdermal potential of indomethacin: characterization, rheological characteristics, and ex vivo skin permeation studies", J. Drug Target., 17(6): 435-441.

39. Abdelgawada, A. M., Hudsona, S. M., Rojasb, O. J. , (2014). "Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems", Carbohydr. Polym., 100: 166-178.

40. Talegaonkar, S., Tariq, M., Alabood, R. M. , (2011). "Design and Developement of O/W Nanoemulsion for the Transdermal Delivery of Ondansetron",  Bull. Pharm. Res.,1(3): 18-30.

41. Grumezescu, A. M. , (2016). "Nanoemulsions-based delivery systems", in Emulsions, 304.

42. Junyaprasert, V. B., Teeranachaideekul, V., Souto, V., Boonme, P., Müller, R. H. , (2009). "Q10-loaded NLC versus nanoemulsions: Stability, rheology and in vitro skin permeation", Int. J. Pharm., 377: 207-214.

43. Bernardi, D. S., Daniela, Pereira, T. A., Maciel, N. R., Bortoloto, J., Viera, G. S., Oliveira, G. C., Rocha-Filho, P. A. , (2011). "Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments",  J. Nanobiotechnology., 9: 44.

44. Heydari, M. , Bagheri, M. , Rabieh, S., (2014). "High Energy Ultrasonification Preparation of Thyme Oil Nanoemulsion", in 5th International Congress on Nanoscience & Nanotechnology, Tehran, Iran.

45. Donsì, F., Sessa, M., Ferrari, G., (2011). "Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization", Ind. Eng. Chem. Res., 51(22): 7606-7618.

46. Qian, C., McClements, D. J. , (2011). "Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size", Food Hydrocoll., 25: 1000-1008.

47. McClements, D. J., (2010). "Emulsion Design to Improve the Delivery of Functional Lipophilic Components", Annu. Rev. Food Sci. T., 1: 241-269.

48. Jaiswal, M., Dudhe, R., Sharma, P. K., (2015). "Nanoemulsion: an advanced mode of drug delivery system", Biotech., 5: 123-127.

49. Hughes, J. M., Budd, P. M., Grieve, A., Dutta, P., Tiede, K., Lewis, J., (2015). "Highly monodisperse, lanthanide-containing polystyrene nanoparticles as potential standard reference materials for environmental “nano” fate analysis" J. Appl. Polym. Sci., 132: 42061.

50. Malvern Co., (2011). "Dynamic Light Scattering Common terms defined," Malvern Instruments Limited.

51. Otoni, C. G., Pontes, S. S. F., Medeiros, E. A. A., Soares, N. F. F., (2014). "Edible Films from Methylcellulose and Nanoemulsions of Clove Bud (Syzygium aromaticum) and Oregano (Origanum vulgare) Essential Oils as Shelf Life Extenders for Sliced Bread",  J. Agric. Food Chem., 62: 5214-5219.

52. Abdelhalim, M. K., Mady, M. M., Ghannam, M. M., (2012). "Physical Properties of Different Gold Nanoparticles: Ultraviolet-Visible and Fluorescence Measurements"  Nanomed. Nanotechnol., 3(3): 1-5.

53. Sanda, F. M., Victor, M. E., Monica, T. A., Alina, C., (2012). "Spectrophotometric Measurements techniques for Fermentation Process", Hungary-Romania Cross-BorderCo-Operation Programme 2007-2013.

54. Tomaszewsk, E., Soliwod, K., Kadziol, K., Tkacz-Szczesn, B., Celichowski, G., Cichomski, M., Szmaj, W., Grobelny, J., (2013). "Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids", Nanomaterials., 2013: 1-10.

55. Zinin, P., "Transmission Electron Microscope," University of Hawai, Lecture 14, Honolulu, USA.

56. Farag, R. S. , Daw, Z. Y. , Hewwdi, F. M., EL-Baroty, G. S. A., (1989). "Antimicrobial Activity of Some Egyptian Spice Essential Oils", J. Food Protect., 52(9): 665-667.

57. Gutierrez, J., Barry-Ryan, C., Bourke, P., (2008). "The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients",  ‎Int. J. Food Microbiol, 124: 91-97.

58. Schelz, Z., Molnar, J., Hohmann, J., (2006). "Antimicrobial and antiplasmid activities of essential oils", Fitoterapia., 77: 279-285.

59. Burt, S. , (2004). "Essential oils: their antibacterial properties and potential applications in foods—a review", ‎Int. J. Food Microbiol., 94: 223-253.

60. Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J.A., Nunes, M. L., (2013). "Chemical composition and antibacterial and antioxidant properties of commercial essential oils",  Ind. Crop Prod., 43: 587-595.

61. Chang, Y. , McLandsborough, L., McClements, D. J. , (2015). "Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate)", Food Chem., 172: 298-304.