Green Synthesis of Silver Nanoparticles ‎Using Amazon Fruits

Document Type : Research Paper


1 Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil.‎

2 Institute of Biodiversity and Forests, Federal University of Western Pará, Pará, Brazil.‎

3 Microbiology Laboratory, Federal University of Western Pará, Pará, Brazil.‎

4 Laboratory of Basic and Applied Bacteriology, State University of Londrina, Londrina, ‎Brazil.‎


   In this study, we report the green synthesis of silver nanoparticles (AgNPs) from extracts of native fruits from Amazonia, Brazil. AgNPs were characterized by UV/Vis and medium infrared (MIR) spectroscopy. Their antimicrobial activities were evaluated against the growth of bacteria and leavers, as well as the evaluation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The colloidal solutions had a maximum absorption peak around 440 nm, as was well reported in the literature for colloidal silver. The MIR spectra identified the functional groups of carboxylic acids and several phenolic compounds as possible factors responsible for the stabilization and coating of AgNPs. All synthesized AgNPs showed antimicrobial activity against Candida albicans, Escherichia coli and Staphylococcus aureus. In this sense, the obtained results showed that the native plants of Amazonia have potential to be used for the green synthesis of AgNPs and that more studies related to their applications should be performed.


  1. Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S., (2016). “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise”, Journal of advanced research, 7(1): 17-28.
  2. Shams, S., Pourseyedi, Sh., Hashemipour Rafsanjani, H., (2014). “Green synthesis of silver nanoparticles: eco-friendly and antibacterial”, International Journal of nanoscience and nanotechnology, 10(2): 127-132.
  3. Xue, B., He, D., Gao, S., Wang, D., Yokoyama, K., Wang, L., (2016). “Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium”International journal of nanomedicine., 11: 1899-1906.
  4. Kaviya, S., santhanalakshmi, J., viswanathan, B., (2011). “Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity”, Journal of nanotechnology, Article ID 152970.
  5. Saxena, A., Tripathi, R. M., Zafar, F., Singh, P., (2012). “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity”, Material Letters., 67(1): 91-94.
  6. Khalil, K. A., Fouad, H., Elsarnagawy, T., Almajhdi, F. N., (2013). “Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications”, International journal of electrochemical science, 8(3): 3483-3493.
  7. Jha, R. K., Jha, P. K., Chaudhury, K., Rana, S. V., Guha, S. K., (2014). “An emerging interface between life science and nanotechnology: present status and prospects of reproductive healthcare aided by nano-biotechnology”, Nano reviews, 5(1): 22762.
  8. Niraimathi, K. L., Sudha, V., Lavanya, R., Brindha, P., (2013). “Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities”, Colloids and surfaces B: biointerfaces, 102, 288-291.
  9. El-Chaghaby, Ghadir A., Ahmad, Abeer F., (2011). “Biosynthesis of silver nanoparticles using Pistacia lentiscus leaves extract and investigation of their antimicrobial effect”, Oriental journal of chemistry, 27(3): 929-936.
  10. Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., Dhanaraj, S. A., (2011). “Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities”, Journal of saudi chemical society, 15(2): 113-120.
  11. Wong, K. K., Cheung, S. O., Huang, L., Niu, J., Tao, C., Ho, C. M., Tam, P. K., (2009). “Further evidence of the anti-inflammatory effects of silver nanoparticles”, ChemMedChem: Chemistry enabling drug discovery, 4(7): 1129-1135.
  12. Baruwati, B., Polshettiwar, V., Varma, R. S., (2009). “Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves”, Green chemistry, 11(7): 926-930.
  13. Popescu, M., Velea, A., Lőrinczi, A., (2010). “Biogenic production of nanoparticles”, Digest journal of nanomaterials & biostructures (DJNB), 5(4): 1035-1040.
  14. Sowbarnika, R., Anhuradha, S., Preetha, B., (2018). “Enhanced antimicrobial effect of yeast mediated silver nanoparticles synthesized from baker’s yeast”, International Journal of nanoscience and nanotechnology, 14(1): 33-42.
  15. Kurian, M., Varghese, B., Athira, T. S., Krishna, S., (2016). “Novel and efficient synthesis of silver nanoparticles using Curcuma longa and Zingiber officinale rhizome extracts”, International Journal of nanoscience and nanotechnology, 12(3): 175-181.
  16. Ajitha, B., Reddy, Y. A. K., Reddy, P. S., (2015). “Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract”, Materials science and engineering: C, 49: 373-381.
  17. Guo, M., Li, W., Yang, F., & Liu, H., (2015). “Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract”, Spectrochimica acta part A: molecular and biomolecular spectroscopy, 142: 73-79.
  18. Mondal, S., Roy, N., Laskar, R. A., Sk, I., Basu, S., Mandal, D., Begum, N. A., (2011). “Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves”, Colloids and surfaces B: biointerfaces, 82(2): 497-504.
  19. Thuesombat, P., Hannongbua, S., Akasit, S., Chadchawan, S., (2014). “Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth”, Ecotoxicology and environmental safety, 104: 302-309.
  20. Aromal, S. A., Philip, D., (2012). “Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity”, Spectrochimica acta Part A: molecular and biomolecular spectroscopy, 97: 1-5.
  21. Lok, C. N., Zou, T., Zhang, J. J., Lin, I. W. S., Che, C. M., (2014). “Controlled-release systems for metal-based nanomedicine: encapsulated/self-assembled nanoparticles of anticancer gold (III)/platinum (II) complexes and antimicrobial Silver Nanoparticles”, Advanced materials, 26(31): 5550-5557.
  22. Neves, L. C., Campos, A. J. D., Benedette, R. M., Tosin, J. M., Chagas, E. A., (2012). “Characterization of the antioxidant capacity of natives fruits from the Brazilian amazon region”, Revista brasileira de fruticultura, 34(4): 1165-1173.
  23. Bataglion, G. A., da Silva, F. M., Eberlin, M. N., Koolen, H. H., (2015). “Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS”, Food chemistry, 180: 280-287.
  24. Cetó, X., Capdevila, J., Mínguez, S., del Valle, M., (2014). “Voltammetric BioElectronic Tongue for the analysis of phenolic compounds in rosé cava wines”, Food research international, 55: 455-461.
  25. Cerón, I. X., Higuita, J. C., Cardona, C. A., (2015). “Analysis of a biorefinery based on Theobroma grandiflorum (copoazu) fruit”, Biomass conversion and biorefinery, 5(2): 183-194.
  26. Groove, D. C., Randal, W. A., (1955). “Assay methods antibiotic activity: a laboratory manual”, New York, Medical Enciclopedia.
  27. Wayne, P. A., (2011). “Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing”.
  28. Ankanna, S. T. N. V. K. V. P., Prasad, T. N. V. K. V., Elumalai, E. K., Savithramma, N., (2010). “Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark”, Digest Journal of nanomaterials and biostructures, 5(2): 369-372.
  29. Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., & Ikram, S., (2016). “Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract”, Journal of radiation research and applied sciences, 9(1): 1-7.
  30. Khatami, M., Soltani Nejad, M., Pourseyedi, S., (2015). “Biogenic synthesis of silver nanoparticles using mustard and its characterization”, International journal of nanoscience and nanotechnology, 11(4): 281-288.
  31. Cruz, D., Falé, P. L., Mourato, A., Vaz, P. D., Serralheiro, M. L., Lino, A. R. L., (2010). “Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon verbena)”, Colloids and surfaces B: biointerfaces, 81(1): 67-73.
  32. Ajitha, B., Reddy, Y. A. K., Reddy, P. S., Suneetha, Y., Jeon, H. J., Ahn, C. W., (2016). “Instant biosynthesis of silver nanoparticles using Lawsonia inermis leaf extract: Innate catalytic, antimicrobial and antioxidant activities”, Journal of molecular liquids, 21: 474-481.
  33. Ahmad, N., Shree, K., Srivastava, M., & Dutta, R., (2014). “Novel rapid biological approach for synthesis of silver nanoparticles and its characterization”, International journal of pharmacology, 1(1): 28-31.
  34. Velmurugan, P., Anbalagan, K., Manosathyadevan, M., Lee, K. J., Cho, M., Lee, S. M., Oh, B. T., (2014). “Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens”, Bioprocess and biosystems engineering, 37(10): 1935-1943.
  35. de Lima Yamaguchi, K. K., Pereira, L. F. R., Lamarao, C. V., Lima, E. S., da Veiga-Junior, V. F., (2015). “Amazon acai: Chemistry and biological activities: A review”, Food chemistry, 179: 137-151.
  36. Yang, H., Protiva, P., Cui, B., Ma, C., Baggett, S., Hequet, V., Kennelly, E. J., (2003). “New bioactive polyphenols from Theobroma grandiflorum (“Cupuaçu”)”, Journal of natural products, 66(11): 1501-1504.
  37. Domingues de Souza, L. C., de Sá, M. E., de Moraes, B., Maria, S., de Carvalho, C., Antonio, M., Abrantes, F. L., (2012). “Composição química e nutrientes em sementes das espécies florestais Pente de Macaco, Flor de Paca, Itaúba, Jatobá e Murici Manso”, Bioscience journal, 478-483.
  38. Nabikhan, A., Kandasamy, K., Raj, A., Alikunhi, N. M., (2010). “Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L”, Colloids and surfaces B: biointerfaces, 79(2): 488-493.
  39. Ibrahim, H. M., (2015). “Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms”, Journal of radiation research and applied sciences, 8(3): 265-275.
  40. Rajeshkumar, S., Malarkodi, C., Vanaja, M., Annadurai, G., (2016). “Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens”, Journal of molecular structure, 1116: 165-173.
  41. McQuillan, J. S., Groenaga Infante, H., Stokes, E., Shaw, A. M., (2012). “Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12”, Nanotoxicology, 6(8): 857-866.
  42. Bindhu, M. R., Umadevi, M., (2015). “Antibacterial and catalytic activities of green synthesized silver nanoparticles”, Spectrochimica acta part A: molecular and biomolecular spectroscopy, 135: 373-378.
  43. Ahmed, S., Ikram, S., (2015). “Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application”, Journal of nanomedicine and nanotechnology, 6(4): 309-314.
  44. Anandalakshmi, K., Venugobal, J., Ramasamy, V., (2016). “Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity”, Applied nanoscience, 6(3): 399-408.
  45. Rao, N. H., Lakshmidevi, N., Pammi, S. V. N., Kollu, P., Ganapaty, S., & Lakshmi, P., (2016). “Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities”, Materials science and engineering: C, 62: 553-557.
  46. Hadi Soltanabad, M., Bagherieh-Najjar, M. B., Kohan Baghkheirati, E., & Mianabadi, M., (2018). “Ag-Conjugated nanoparticle biosynthesis mediated by Rosemary leaf extracts correlates with plant antioxidant activity and protein contente”, International journal of nanoscience and nanotechnology, 14(4): 319-325.
  47. Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B., Fávaro, W. J., Nakazato, G., (2016). “Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity”, Nanomedicine: nanotechnology, biology and medicine, 12(3): 789-799.
  48. M Vanaja, M., Annadurai, G., (2013). “Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity”, Applied nanoscience, 3(3): 217-223.
  49. Liu, J., Sonshine, D. A., Shervani, S., Hurt, R. H., (2010). “Controlled release of biologically active silver from nanosilver surfaces”, ACS nano, 4(11): 6903-6913.
  50. Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N. M., Thajuddin, N., Velusamy, P., (2012). “Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach”, Colloids and surfaces B: biointerfaces, 96: 69-74.
  51. Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., Thompson, M., (2009). “Understanding biophysicochemical interactions at the nano–bio interface”, Nature materials, 8(7): 543-557.
  52. Marambio-Jones, C., Hoek, E. M., (2010). “A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment”, Journal of nanoparticle research, 12(5): 1531-1551.
  53. Hussain, S. M., Javorina, A. K., Schrand, A. M., Duhart, H. M., Ali, S. F., Schlager, J. J., (2006). “The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion”, Toxicological sciences, 92(2): 456-463.
  54. Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., Lee, Y. S., (2012). “Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi”, Mycobiology, 40(1): 53-58.
  55. Sharma, V. K., Yngard, R. A., Lin, Y., (2009). “Silver nanoparticles: green synthesis and their antimicrobial activities”, Advances in colloid and interface science, 145(1-2): 83-96.
  56. Verma, D. K., Hasan, S. H., Banik, R. M., (2016). “Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy”, Journal of photochemistry and photobiology B: biology, 155: 51-59.
  57. Dipankar, C., Murugan, S., (2012). “The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts”, Colloids and surfaces B: biointerfaces, 98: 112-119.