The Influence of Thermal Radiation on ‎Mixed Convection MHD Flow of a Casson ‎Nanofluid over an Exponentially Stretching ‎Sheet

Document Type : Research Paper

Authors

1 ‎Department of Mathematics, Government Degree College, Mancherial, 504208, India.‎

2 Department of Mathematics, Osmania University, Hyderabad, 500007, India.‎

3 Department of Mathematics, UCT, Osmania University, Hyderabad, 500007, India.‎

Abstract

   The present article describes the effects of thermal radiation and heat source/sink parameters on the mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary condition. The governing nonlinear system of partial differential equations along with boundary conditions for this fluid flow converted to a system of nonlinear ordinary differential equations by using appropriate similarity transformations. The converted system of equations were solved numerically by using Runge-Kutta fourth order method with shooting technique. The influence of various non-dimensional governing parameters on velocity, temperature and nanoparticle volume fraction profiles have been discussed and presented graphically. Furthermore, the impacts of these parameters on skin friction coefficient and local Nusselt number are exhibited graphically and analized. It found that the velocity profiles and skin friction coefficient increases with an increase in the mixed convection parameter whereas, an opposite trend observed with Casson fluid parameter and magnetic field parameter. The thermal boundary layer thickness enhanced with an increase in Biot number, magnetic field parameter, radiation parameter and heat source/sink parameter. Also, the local Nusselt number decreases with an increase in radiation parameter and heat source/sink parameter.

Keywords


  1. Sakiadis, B. C., (1961). “Boundary layer behaviour on continuous solid surfaces, II. The boundary layer on a continuous flat surface”, AIChE Journal, 7: 221-225.
  2. Crane, L. J., (1970). “Flow past a stretching plate”, Zeitschrift für angewandte Mathematik und Physik, 21(4): 645-647.
  3. Wang, C. Y., (1984). “The three-dimensional flow due to a stretching flat surface”, The Physics of Fluids, 27(8): 1915-1917.
  4. Gupta, P. S., Gupta, A. S., (1977). “Heat and mass transfer on a stretching sheet with suction or blowing”, The Canadian journal of chemical engineering, 55: 744-746.
  5. Carragher, P., Crane, L. J., (1982). “Heat transfer on a continuous stretching sheet”, Zeitschrift für angewandte Mathematik und Physik, 62: 564-565.
  6. Bidin, B., Nazar, R., (2009). “Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation”, European Journal of Scientific Research, 33(4): 710-717.
  7. Bhattacharyya, K., Mukhopadhyay, S., Layek, G.C., (2011). “Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet”, International Journal of Heat Mass Transfer, 54(1-3): 308-313.
  8. Sandeep, N., Sugunamma, V., (2014). “Radiation and inclined magnetic field effects on unsteady hydromagnetic free convection flow past an impulsively moving vertical plate in a porous medium”, Journal of Applied Fluid Mechanics, 7(2): 275-286.
  9. Andersson, H. I., (1995). “An exact solution of the Navier-Stokes equations for MHD flow”, Acta Mechanica, 113: 241-244.
  10. Makinde, O. D., (2001). “MHD steady flow and heat transfer on the sliding plate” AMSE, Modelling, Measurement and Control B, 70(1): 61-70.
  11. Mahapatra, T. R., Nandy, S. K., Gupta, A. S., (2009). “Magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface”, International. Journal of Non-Linear Mechanics, 44: 123-128.
  12. Ishak, A., Bachok, N., Nazar, R., Pop, I., (2010). “MHD mixed convection flow near the stagnation-point on a vertical permeable surface”, Physica A: Statistical Mechanics and its Applications, 389: 40-46.
  13. Akbar, N. S., Ebai, A., Khan, Z. H., (2015). “Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet”, Journal of magnetism and Magnetic Materials, 382: 355-358.
  14. Madhu, M., Kishan, N., (2016). “Magnetohydrodynamic mixed convection of a non-Newtonian power-law nanofluid past a moving vertical plate with variable density”, Journal of the Nigerian Mathematical Society, 35: 199-207.
  15. Ijaz Khan, M., Sumaira, Q., Hayat, T., Waqas, M., Imran Khan, M., Alsaedi, A., (2018), “Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial”, Journal of Molecular Liquids, 259: 274-283.
  16. Anantha Kumar, K., Ramana Reddy J. V., Sugunamma, V., Sandeep, N., (2018). “Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink”, Alexandria Engineering Journal, 57: 435-443.
  17. Magyari, E., Keller, B., (1999). “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface”, Journal of Physics D-Applied Physics, 32(4): 577-585.
  18. Elbashbeshy, E. M. A., (2001).  “Heat transfer over an exponentially stretching continuous surface with suction”, Archive of Applied Mechanics, 53: 643-651.
  19. Al-Odat, M. Q., Damseh, R. A., Al-Azab, T. A., (2006). “Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect”, International Journal of Applied Mechanics and Engineering, 11: 289-299.
  20. Mukhopadhyay, S., (2013). “Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation”, Ain Shams Engineering Journal, 4(3): 485-491.
  21. Rudraswamy, N. G., Gireesha, B. J., (2014). “Influence of chemical reaction and thermal radiation on MHD boundary layer flow and heat transfer of a nanofluid over an exponentially stretching sheet”, Journal of Applied Mathematics and Physics, 2: 24-32.
  22. Hayat, T., Waqas, M., Shehzad, S. A., Alsaedi, A., Waqas, M., Yasmeen, T., (2016). “Chemically reactive flow of third grade fluid by an exponentially convected stretching sheet”, Journal of Molecular Liquids, 223: 853-860.
  23. Gangaiah, T., Saidulu N. and Lakshmi, A. V., (2018). “Magnetohydrodynamic flow of nanofluid over an exponentially stretching sheet in presence of viscous dissipation and chemical reaction”, Journal of Nanofluids, 7(3): 439-448.
  24. Choi, S. U. S., (1995). “Enhancing thermal conductivity of fluids with nanoparticles”, in Proceedings of the ASME, International Mechanical Engineering Congress and Exposition, 66, 995, San Francisco, USA.
  25. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N., (1993). “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles”, Netsu Bussei, 7: 227-233.
  26. Buongiorno, J., (2006). “Convective transport in nanofluids”, Journal of Heat Transfer, 128: 240-250.
  27. Nield, D. A., Kuznetsov, A. V., (2009) “The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid”, International Journal of Heat and Mass Transfer, 52(25-26): 5792-5795.
  28. Angayarkanni, S. A., Philip, J., (2015). “Review on thermal properties of nanofluids: Recent developments”, Advances in Colloid and Interface Science, 225: 146-176.
  29. Sheikholeslami, M., Mollabasi, H., Ganji, D. D., (2015). “Analytical investigation of MHD Jeffery–Hamel nanofluid flow in non-parallel walls”, International Journal of Nanoscience and Nanotechnology11(4): 241-248.
  30. Reddy, C.S., Naikoti, K., (2016). “MHD boundary layer flow of Casson nanofluid over a non linear stretching sheet with viscous dissipation and convective condition”, Journal of Nanofluids, 5(6): 870-879.
  31. Ramya, D., Srinivasa Raju, R., Anand Rao, J., Rashidi, M. M., (2016). “Boundary layer viscous flow of nanofluids and heat transfer over a nonlinearly isothermal stretching sheet in the presence of heat generation/absorption and slip boundary conditions”, International Journal of Nanoscience and Nanotechnology, 12(4): 251-268.
  32. Casson, N., (1959).  “A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. In: Mill, C.C.,Ed., Rheology of Disperse Systems”, Pergamon Press, Oxford, 84-104.
  33. Dash, R. K., Mehta, K. N., Jayaraman, G., (1996). “Casson fluid flow in a pipe filled with a homogeneous        porous medium”, International Journal of Engineering Science, 34: 1145-1156.
  34. Fredrickson, A. G., (1964). “Principles and Applications of Rheology”. Prentice-Hall, Englewood Cliffs.
  35. Charm, S., Kurland, G., (1965). “Viscometry of human blood for shear rates of 0-100,000 sec ”, Nature, 206: 617-618.
  36. Walwander, W. P., Chen, T. Y., Cala, D. F., (1975). “An approximate Casson fluid model for tube flow of blood”, Biorheology, 12: 111-119.
  37. Malik, M. Y., Naseer, M., Nadeem, S., Rehman, A., (2014). “The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder”, Applied Nanoscience, 4: 869-873.
  38. Prabhakar, B., Shankar, B., (2015). “Mixed convection MHD flow of a Casson nanofluid over a non linear permeable stretching sheet with viscous dissipation”, Journal of Applied Mathematics and Physics, 3: 1580-1593.
  39. Arthur, E. M., Seini, I. Y., Bortteir, L. B., (2015). “Analysis of Casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field”, Journal of Applied Mathematics and Physics, 3: 713-723.
  40. Raju, C. S. K., Sandeep, N., Sugunamma, V., Babu, M. J., Reddy, J. V. R., (2016). “Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface”, Engineering Science and Technology, an International Journal, 19: 45-52.
  41. Anantha Kumar, K., Ramana Reddy J. V., Sandeep, N., Sugunamma, V., (2016). “Dual solutions for thermo diffusion and diffusion thermo effects on 3D MHD Casson fluid flow over a stretching surface”, Research Journal of Pharmacy and Technology, 9(8): 1187-1194.
  42. Tamoor, M., Waqas, M., Ijaz Khan, M., Alsaedi, A., Hayat, T., (2017), “Magnetohydrodynamic flow of Casson fluid over a stretching cylinder”, Results in Physics, 7: 498-502.
  43. Pramanik, S., (2014). “Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation”, Ain Shams Engineering Journal, 5: 205-212.
  44. Hayat, T., Ashraf, M. B., Shehzad, S. A., Alsaedi, A., (2015). “Mixed convection flow of Casson nanofluid over a stretching sheet with convectively heated chemical reaction and heat source/sink”, Journal of Applied Fluid Mechanics, 8(4): 803-813.
  45. Bhattacharyya K., Uddin, M. S., Layek, G. C., (2016). “Exact solution for thermal boundary layer in Casson fluid flow over permeable shrinking sheet with variable wall temperature and thermal radiation” Alexandria Engineering Journal, 55: 1703-1712.
  46. Anki Reddy, P. B., (2016). “Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction”, Ain Shams Engineering Journal, 7: 593-602.
  47. Kumar, P. V., Ibrahim, S. M., Lorenzini, G., (2017). “Computational modeling of magnetohydrodynamic Casson nanofluid flow over an exponentially slendering surface with radiation and heat Source”, International Journal of Emerging Engineering Research and Technology, 5: 1-12.
  48. Zaigham Zia, Q. M., Ikram, U., Waqas, M., Alsaedi, A., Hayat, T., (2018), “Cross diffusion and exponential space dependent heat source impacts in radiated three-dimensional (3D) flow of Casson fluid by heated surface”, Results in Physics, 8: 1275-1282.
  49. Lakshmi, K. B., Kumar, K. A., Reddy, J. V. R., Sugunamma, V., (2019). “Influence of nonlinear radiation and cross diffusion on MHD flow of Casson and Walters-B nanofluids past a variable thickness sheet”, Journal of Nanofluids, 8(1): 73-83.
  50. Sparrow, E. M., Cess, R. D., (1978). “Radiation Heat Transfer”, Hemisphere, Washington, USA.
  51. Brewster, M. Q., (1992). “Thermal Radiative Transfer and Properties”, John Wiley and Sons, New York, USA.
  52. Dulal Pal, (2010). “Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field”, Applied Mathematics and Computation, 217(6): 2356-2369.