Improving the Thermal Characteristics of Semiconductor Lasers Using a New Asymmetric Waveguide Structure

Document Type : Research Paper

Authors

1 Department of Engineering Sciences, Faculty of Technology and Engineering East of Guilan, University of Guilan, 44891- 63157, Rudsar-Vajargah, Iran.

2 Plasma & Nuclear Fusion Research School, Nuclear Science& Technology Research Institute, Tehran, Iran.

Abstract

   Self-heating leads to a temperature rise of the laser diode and limits the output power and efficiency due to increased loss and decreased differential gain. To control device self-heating, it is required to design the laser structure with a low optical loss, while the heat flux must spread out of the device efficiently. In this study, a new asymmetric waveguide design is proposed and the thermal performance of the laser with this new design is theoretically analyzed and compared with conventional symmetric waveguide laser. For this purpose, the simulation PICS3D software is used, which self-consistently combines 3D simulation of carrier transport, self-heating, and optical wave-guiding. According to the numerical simulation results, when the asymmetric waveguide is used the semiconductor laser shows a higher output light power and slope efficiency. The results show that Joule heating decreases and recombination heat increases, but heat dissipation occurs more effectively due to increased cooling densities. Overall, the maximum laser operation temperature decreases, confirming that our new asymmetric waveguide structure improves laser thermal characteristics.

Keywords


  1. Bahrami Yekta, V., Kaatuzian, H., (2014). “Simulation and Temperature Characteristics Improvement of 1.3 μm AlGaInAs Multiple Quantum Well Laser”, International Journal of Optics and Applications, 4: 46-53.
  2. Jabbari, M., Moravvej-Farshi, M. K., Ghayour, R., Zarifkar, A., (2011). “The Effects of Strained Multiple Quantum Well on the Chirped DFB-SOA All Optical Flip-Flop”, Int. J. Nanosci. Nanotechnol, 7: 190-196.
  3. Gonul, B., Cak, F. Ko., Toktam, H., Oduncuoglu,M., (2004). “Theoretical Comparison of the Band Alignment of Conventionally Strained and Strain-Compensated Phosphorus- Aluminum- and Nitrogen-Based 1.3 μm QW Lasers”, Chinese Journal of Physics, 42: 764-775.
  4. Rajaei, E., Borji, M. A., (2016). “Energy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes”, Int. J. Nanosci. Nanotechnol, 12: 45-53.
  5. Piprek, J., Abraham,P., Bowers, J. E., (2000). “Self-consistent analysis of high-temperature effects on strained layer multi quantum-well In-GaAsP-InP lasers”, IEEE J. Quantum Electron, 36: 366-374.
  6. Tsai, C. Y., Eastman, L. F., Lo, Y. H., (1993). “Hot carrier and hot phonon effects on high-speed quantum well lasers”, Appl. Phys. Lett., 63: 3408–3410.
  7. Ng, W. C., Liu, Y., Hess, K., (2004). “Lattice Temperature Model and Temperature Effects in Oxide-Confined VCSEL’s”, Journal of Computational Electronics, 3: 103-116.
  8. Piprek, J., White, J. K., Spring Thorpe, A. J., (2000). “What limits the maximum output power of long wavelength AlGaInAs–InP laser diodes?, IEEE J. Quantum Electron, 38 : 1253–1259.
  9. Liu, Y., Ng, W. C., Choquette, K.D., Hess, K., (2005). “Numerical investigation of self-heating effects of oxide confined vertical-cavity surface-emitting lasers”, IEEE J. Quant. Electron, 41: 15-25.

10. Etienne, B., Shah, J., Leheny, R. F., Nahory, R. E., (1982). “Influence of hot carriers on the temperature dependence of threshold in 1.3-μmInGaAsP lasers”, Appl. Phys. Lett., 41: 1018–1020.

11. Slipchenko, S. O., Vinokurov, D. A., Pikhtin, N. A., Sokolova, Z. N., Stankevich, A. L., Tarasov,I. S., Alferov, Z. I., (2004). “Ultralow internal optical loss in separate-confinement quantum well heterostructures”, Semiconductor, 38: 1430-1439.

12. Tijero, J. M. G., Odriozola, H., Borruel, L., Esquivias, I., Sujecki, S., Larkins, E. C., (2007). “Enhanced Brightness of Tapered Laser Diodes Based on an Asymmetric Epitaxial Design”, IEEE. Photon. Tech. Lett, 19:1640-1642.

13. Bour, D. P., Kneissl, M., Van de Walle, C. G., Evans, G. A., Romano, L. T., Northrup, J., Teepe, M., Wood, R., Schmidt, T., Schoffberger, S., Johnson, N. M., (2000). “Design and performance of Asymmetric Waveguide Nitride Laser Diodes”, IEEE J. Quant. Electron, 36: 184-191.

14. Available online at WWW.Crosslight.Com.

15. Danesh kaftroudy, Z., Rajaei, E., (2011). “Thermal simulation of InP- based 1.3 µm vertical cavity surface emitting laser with AsSb- based DBRs”, Optics Communications, 284: 330-340.

16. Piprek, J., (2003). “Semiconductor optoelectronic devices”, Elsevier Science, San Diego.

17. PICS3D User’s manual version 2008.12.

18. Li, X., Zhao, D. G., Jiang, D. S., Chen, P., Liu, Z. S., Zhu, J. J., Shi, M., Zhao, D. M., Liu, W., (2016). “Suppression of electron leakage in 808 nm laser diodes with asymmetric waveguide layer”, J. Semicond., 37: 014007-1-014007-4.

19. Li, X., (2009). “Optoelectronic Devices: Design, Modeling and simulation”, Cambridge University Press.

20. Piprek, J., (2005). “Optoelectronic Devices: Advanced Simulation and Analysis”, Springer.

21. Pipe, K. P., Ram, R. J., Shakouri, A., (2002). “Internal Cooling in Semiconductor Laser Diode”, IEEE. Photon. Tech. Lett., 14: 453-455.