ZnS Nanoparticles Effect on Electrical Properties of Au/PANI-ZnS/Al Heterojunction

Document Type : Research Paper


1 Photonics Research Group, Engineering Research Center, Yazd University, Yazd, Iran.

2 Atomic and Molecular Division, Faculty of Physics, Yazd University, Yazd, Iran.


   Hybrid polyaniline (PANI) based composites incorporating zinc sulfide (ZnS) nanoparticles (NPs) have been synthesized by using chemical oxidation technique. Schottky junction is constructed by depositing Polyaniline-zinc sulfide nanocomposite (PANI-ZnS NCs) on Au electrode. The results were compared with pure polyaniline. The IV characteristics of the PANI-ZnS NCs heterojunction have shown the rectifying behavior. The detailed electrical measurement of the devices is performed under the different ratio of ZnS nanoparticles. An abnormal increase in the barrier height and decrease in the ideality factor with increasing 10 wt.% ZnS nanoparticles have been shown. The ideality factor (h) and barrier height (fb) of the heterojunction diode at room temperature are found to be 3.41 and 0.82 eV, respectively. These results showed the interaction between ZnS nanoparticles and PANI molecular chains.


1.     Xu, H., Ding, L. X., Liang, C. L., Tong, Y. X., Li, G. R., (2013). “High-performance polypyrrole functionalized PtPd electrocatalysts based on PtPd/PPy/PtPd three-layered nanotube arrays for the electrooxidation of small organic molecules”, NPG Asia Materials, 5(11): e69.
2.     Soleimani, M., Ghorbani, M., Salahi, S., (2016). “Antibacterial activity of polypyrrole-chitosan nanocomposite: mechanism of action”, International Journal of Nanoscience and Nanotechnology, 12(3): 191-197.
3.     Ghajar, M. H., Mousavi, M., Burzhuev, S., Irannejad, M., Yavuz, M., Abdel-Rahman, E., (2018). “A Short Review on Fabrication Methods of Micro-Cantilever for Ionic Electroactive Polymer Sensors/Actuators”, International Journal of Nanoscience and Nanotechnology, 14(2): 101-109.
4.     Ozaki, M., Peebles, D., Weinberger, B., Chiang, C., Gau, S., Heeger, A., MacDiarmid, A., (1979). “Junction formation with pure and doped polyacetylene”, Applied Physics Letters, 35(1): 83-85.
5.     Chiang, C., Gau, S., Fincher Jr, C., Park, Y., MacDiarmid, A., Heeger, A., (1978). “Polyacetylene,(CH)x: n‐type and p‐type doping and compensation”, Applied Physics Letters, 33(1): 18-20.
6.     Ding Yu, L., Lei, S., Sheng Dong, Z., Yi, W., Xiao Yan, L., Ru Qi, H., (2007). “Schottky barrier MOSFET structure with silicide source/drain on buried metal”, Chinese Physics, 16(1): 240.
7.     Zhang, J., Wang, S., Xu, M., Wang, Y., Xia, H., Zhang, S., Wu, S., (2009). “Polypyrrole-coated SnO2 hollow spheres and their application for ammonia sensor”, The Journal of Physical Chemistry C, 113(5): 1662-1665.
8.     Milani Moghaddam, H., (2011). “IV Characteristics of a Molecular Wire of Polyaniline (Emeraldine Base)”, International Journal of Nanoscience and Nanotechnology, 7(4): 201-204.
9.     Zheng, H., Li, Y., Liu, H., Yin, X., Li, Y., (2011). “Construction of heterostructure materials toward functionality”, Chemical Society Reviews, 40(9): 4506-4524.
10.  Layeghi, R., Farbodi, M., Ghalebsaz Jeddi, N., (2016). “Preparation of polyaniline-polystyrene-ZnO nanocomposite and characterization of its anti-corrosive performance”, International Journal of Nanoscience and Nanotechnology, 12(3): 167-174.
11.  Xue, Z., Yang, H., Gao, J., Li, J., Chen, Y., Jia, Z., Li, Y., (2016). “Controlling the Interface Areas of Organic/Inorganic Semiconductor Heterojunction Nanowires for High-Performance Diodes”, ACS applied materials & interfaces, 8(33): 21563-21569.
12.  Sadeghi, B., Sadjadi, M., Pourahmad, A., (2008). “Effects of protective agents (PVA & PVP) on the formation of silver nanoparticles”, International Journal of Nanoscience and Nanotechnology, 4(1): 3-12.
13.  Godovsky, D. Y., (2000). “Device applications of polymer-nanocomposites Biopolymers· PVA Hydrogels, Anionic Polymerisation Nanocomposites”, (pp. 163-205), Springer.
14.  Iqbal, T., Tufail, S., Ghazal, S., (2017). “Synthesis of Silver, Chromium, Manganese, Tin and Iron Nano Particles by Different Techniques”, International Journal of Nanoscience and Nanotechnology, 13(1): 19-52.
15.  Falahatgar, S., E Ghodsi, F., (2016). “Annealing Temperature Effects on the Optical Properties of MnO2: Cu Nanostructured Thin Films”, International Journal of Nanoscience and Nanotechnology, 12(1): 7-18.
16.  Dey, S., Baglari, S., Sarkar, D., (2016). “Junction characteristics of ITO/PANI-ZnS/Ag and ITO/PANI-CdS/Ag Schottky diodes: a comparative study”, Indian Journal of Physics, 90(1): 29-34.
17.  Zhang, K., Sharma, S., (2016). “Site–selective, Low-loading, Au Nanoparticle-Polyaniline Hybrid Coatings with Enhanced Corrosion Resistance and Conductivity for Fuel Cells”, ACS Sustainable Chemistry & Engineering, 5(1): 277-286.
18.  Hatamzadeh, M., Johari-Ahar, M., Jaymand, M., (2012). “In situ chemical oxidative graft polymerization of aniline from Fe3O4 nanoparticles”, International Journal of Nanoscience and Nanotechnology, 8(1): 51-60.
19.  Akbarinezhad, E., (2014). “Synthesis of conductive polyaniline–graphite nanocomposite in supercritical CO2 and its application in zinc-rich epoxy primer”, The Journal of Supercritical Fluids, 94: 8-16.
20.  Navarchian, A. H., Joulazadeh, M., Karimi, F., (2014). “Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces”, Progress in Organic Coatings, 77(2): 347-353.
21.  Shit, A., Chatterjee, S., Nandi, A. K., (2014). “Dye-sensitized solar cell from polyaniline–ZnS nanotubes and its characterization through impedance spectroscopy”, Physical Chemistry Chemical Physics, 16(37): 20079-20088.
22.  Bioki, H. A., (2013). “Determination of the conduction mechanism and extraction of diode parameters of Au/PANI-TiO2/Al Schottky diode”, The European Physical Journal Applied Physics, 62(02): 20201.
23.  Rhoderick, E., Williams, R., Hammond, P., Grimsdale, R., (1988). “Metal-Semiconductor Contacts, Monographs in Electrical and Electronic Engineering”, Oxford University Press, USA.
24.  Subhan, M. A., Chandra Saha, P., Uddin, N., Sarker, P., (2017). “Synthesis, Structure, Spectroscopy and Photocatalytic Studies of Nano Multi-Metal Oxide MgO∙ Al2O3∙ ZnO and MgO∙ Al2O3∙ ZnO-Curcumin Composite”, International Journal of Nanoscience and Nanotechnology, 13(1): 69-82.
25.  Cheung, S., Cheung, N., (1986). “Extraction of Schottky diode parameters from forward current‐voltage characteristics”, Applied Physics Letters, 49(2): 85-87.
26.  Aydoğan, Ş., Sağlam, M., Türüt, A., (2008). “Some electrical properties of polyaniline/p-Si/Al structure at 300K and 77K temperatures”, Microelectronic Engineering, 85(2): 278-283.
27.  Kaur, J., Singh, S., Kumar, R., Kanjilal, D., Chakarvarti, S., (2011). “Fabrication of Copper and Iron Nano/Micro Structures on Semiconducting Substrate and Their Electrical Characterization”, International Journal of Nanoscience and Nanotechnology, 7(4): 183-189.
28.  Oueriagli, A., Kassi, H., Hotchandani, S., Leblanc, R., (1992). “Analysis of dark current‐voltage characteristics of Al/chlorophyll a/Ag sandwich cells”, Journal of applied physics, 71(11): 5523-5530.
29.  Balberg, I., Azulay, D., Toker, D., Millo, O., (2004). “Percolation and tunneling in composite materials”, International Journal of Modern Physics B, 18(15): 2091-2121.
30.  Heo, S., Yun, J., Oh, K., Han, K., (2006). “Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells”, Advanced Composite Materials, 15(1): 115-126.
31.  Wang, C. C., Song, J. F., Bao, H. M., Shen, Q. D., Yang, C. Z., (2008). “Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities”, Advanced Functional Materials, 18(8): 1299-1306.
32.  Jang, J., Ha, J., Kim, K., (2008). “Organic light-emitting diode with polyaniline-poly (styrene sulfonate) as a hole injection layer”, Thin Solid Films, 516(10): 3152-3156.
33.  Schmitsdorf, R., Kampen, T., Monch, W., (1997). “Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers”, Journal of Vacuum Science & Technology B, 15(4): 1221-1226.
34.  Campos, M., Bulhoes, L. d. S., Lindino, C. A., (2000). “Gas-sensitive characteristics of metal/semiconductor polymer Schottky device”, Sensors and Actuators A: Physical, 87(1): 67-71.