Effect of Asymmetric Functionalized Graphene Oxide (Janus GO) on Young′s Modulus and Glass Transition Temperature of PSf Ultrafiltration Membrane

Document Type : Research Paper


1 Transport Phenomena & Nanotech. Lab (TPNT), School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.

2 2Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.

3 Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia UTM, 81310 Johor Bahru, Johor, Malaysia.


   In this study, effect of asymmetric functionalized graphene oxide (Janus GO) on Young′s modulus and glass transition temperature of Polysulfone (PSf) ultrafiltration membranes was investigated. The membranes were prepared via phase inversion method and GO nanosheets were dispersed in casting solution by sonication. Results showed that the Normalized Young’s modulus (on the basis of neat PSf membrane Young’s modulus) increased from 1 to 1.35 for neat PSf membrane compared to the membrane with 1% Janus GO nanosheets. This enhancement indicated the improvement of mechanical properties of modified membranes. Also, application of Janus GO nanosheets caused enhancement of thermal stability of modified membranes by increasing glass transition temperature to 182.97 °C compared to 180.1 °C for neat PSf membrane. These improvements were ascribed to the enhancement of dispersion and stability of Janus GO nanosheets in membranes matrix.


  1. Asci, Y. S., Dramur, U., Bilgin, M., (2017). "Investigation of the separation of carboxylic acids from aqueous solutions using a pilot scale membrane unit", J. Mol. Liq., 248: 391-398.
  2. Conidi, C., Cassano, A., Caiazzo, F., Drioli, E., (2017). "Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes", J. Food. Eng., 195: 1-13.
  3. Wei, X., Fei, Y., Shi, Y., Chen, J., Lv, B., Chen, Y., Xiang, H., (2016). "Hemocompatibility and ultrafiltration performance of PAN membranes surface‐modified by hyperbranched polyesters", Polym. Advan. Technol., 27(12): 1569-76.
  4. Ghaee, A., Shariaty-Niassar, M., Barzin, J., Ismail, A. F., (2013). "Chitosan/polyethersulfone composite nanofiltration membrane for industrial wastewater treatment", International Journal of Nanoscience and Nanotechnology., 9(4): 213-220.
  5. Anisimov, S. I., Anisimova, S. Y., Baldin, A. A., Baldina, E. G., Luzanov, V. A., Denisenko, O. O., (2010). "Ultrafiltration of Cellulose Solutions for Medical Purposes Using Track Membranes", Biomed. Eng., 44(4): 130-133.
  6. Bhunia, T. (2018). "Different PVA-hydroxypropyl guar gum irradiated nanosilica composite membranes for model drug delivery device", International Journal of Nanoscience and Nanotechnology., 14(3): 187-95.
  7. Chen, S. H., Willis, C., Shull, K. R., (2017). "Water transport and mechanical response of block copolymer ion-exchange membranes for water purification", J. Membrane. Sci., 544(Supplement C): 388-96.
  8. Pu, Y., Huang, X., Yang, P., Zhou, Y., Xuan, S., Zhang, Y., (2017). "Effect of non-sulfonated diamine monomer on branched sulfonated polyimide membrane for vanadium redox flow battery application", Electrochim. Acta., 241(Supplement C): 50-62.
  9. Gul, S., Rehan, Z. A., Khan, S. A., Akhtar, K., Khan, M. A., Khan, M. I., Rashid, M. I., Asiri, A. M., Khan, S. B., (2017). "Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol", J. Mol. Liq., 230(Supplement C): 616-624.
  10. Rakhshan, N., Pakizeh, M., (2015). "The effect of chemical modification of SiO2 nanoparticles on the nanofiltration characteristics of polyamide membrane", Korean J. Chem. Eng., 32(12): 2524-2533.
  11. Safarpour, M., Vatanpour, V., Khataee, A., (2016). "Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance", Desalination, 393: 65-78.
  12. Dong, H., Xiao, K. j., Li, X. l., Ren, Y., Guo, S. y., (2013). "Preparation of PVDF/Al2O3 hybrid membrane via the sol–gel process and characterization of the hybrid membrane", Desalin. Water. Treat., 51(19-21): 3685-3690.
  13. Bano, S., Mahmood, A., Kim, S. J., Lee, K. H., (2015). "Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties", J. Mater. Chem. A., 3(5): 2065-2071.
  14. Pan T. Y., Chan, J. X., Chung, T. S., Weber, M., Staudt, C., Maletzko, C., (2015). "Simultaneously covalent and ionic bridging towards antifouling of GO-imbedded nanocomposite hollow fiber membranes", J. Mater. Chem. A., 3(19): 10573-10584.
  15. Yang, M., Zhao, C., Zhang, S., Li, P., Hou, D., (2017). "Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property", Appl. Surf. Sci., 394(Supplement C): 149-159.
  16. Lee, J., Chae, H. R., Won, Y. J., Lee, K., Lee, C. H., Lee, H. H., Kim, I. C., Lee, J. M., (2013). "Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment", J. Membrane. Sci., 448: 223-230.
  17. Ionita, M., Pandele, A. M., Crica, L., Pilan, L., (2014). "Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide", Compos. Part. B: Eng., 59: 133-139.
  18. Shukla, A. K., Alam, J., Alhoshan, M., Dass, L. A., Muthumareeswaran, M., (2017). "Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide", Sci. Rep-UK., 7: 41976.
  19. Zhao, Y., Lu, J., Liu, X., Wang, Y., Lin, J., Peng, N., Li, J., Zhao, F., (2016). "Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide". J. Colloid. Interf. Sci., 480: 1-8.
  20. Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., Zhou, B., Qian, X., (2014) "Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes", J. Membrane. Sci., 458: 1-13.
  21. Ryu, S. H., Shanmugharaj, A. M., (2014). "Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites", Chem. Eng. J., 244: 552-560.
  22. Akbari, M., Shariaty-Niassar, M., Matsuura, T., Ismail, A. F., (2018). "Janus graphene oxide nanosheet: A promising additive for enhancement of polymeric membranes performance prepared via phase inversion", J. Colloid. Interf. Sci., 527: 10-24.
  23. Hummers J. r. W. S., Offeman R. E., (1958). "Preparation of graphitic oxide", J. Am. Chem. Soc., 80(6): 1339-1339.
  24. Wu, H., Yi, W., Chen, Z., Wang, H., Du, Q., (2015). "Janus graphene oxide nanosheets prepared via Pickering emulsion template". Carbon., 93: 473-483.
  25. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., Tour, J. M., (2010). "Improved synthesis of graphene oxide", Acs. Nano., 4(8): 4806-4814.
  26. Zhang, L., Liang, J., Huang, Y., Ma, Y., Wang, Y., Chen, Y., (2009). "Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation", Carbon., 47(14): 3365-3368.
  27. Tang, Y. P., Paul, D. R., Chung, T. S., (2014). "Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol", J. Membrane. Sci.,  458: 199-208.
  28. Yu, Z., Zhang, S., Gao, J., Chung, T. S., (2016). "Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal", J. Membrane. Sci., 515: 230-237.
  29. Cai, N., Li, C., Luo, X., Xue, Y., Shen, L., Yu, F., (2016). "A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol", J. Mater. Sci., 51(2): 797-808.
  30. Mukherjee, R., Bhunia, P., De, S., (2016). "Impact of graphene oxide on removal of heavy metals using mixed matrix membrane", Chem. Eng. J., 292: 284-297.