A Facile and Green Synthesis Route for the Production of Silver Nanoparticles in Large Scale

Document Type : Research Paper


Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.


   In the present work, a fast, green and simple synthesis method for the production of silver nanoparticles (AgNPs) is introduced. Silver nanoparticles are currently among the most widely used man-made nano materials, present in a wide range of consumer products. Green chemistry is characterized by careful planning of chemical synthesis of silver nanoparticles to reduce adverse outcomes. Synthesis of AgNPs was carried out at 100 C temperature using glucose as reducing agent and starch as capping agent. Prepared AgNPs were characterized using transmission electron microscopy, UV-Vis spectrophotometry, Dynamic Light Scattering (DLS) and X-ray Diffraction (XRD) patterns. It was found that the synthesized AgNPs have an average diameter size of 50 nm. Further experiments showed that silver nanoparticles have good antibacterial properties and their production process is capable to scaling up. Due to the using of natural and low-cost materials, the production process is also environmental and eco-friendly.


  1. Frattini, A., Pellegri, N., Nicastro, D., De Sanctis, O., (2005). "Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes", Materials Chemistry and Physics, 94(1): 148-152.
  2. Nagy, A. J., Mestl, G., Schlögl, R., (1999). "The role of subsurface oxygen in the silver-catalyzed, oxidative coupling of methane", Journal of Catalysis, 188(1): 58-68.
  3. McFarland, A. D., Van Duyne, R. P., (2003). "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity", Nano Letters, 3(8): 1057-1062.
  4. Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A., Schultz, S., (2002). "Shape effects in plasmon resonance of individual colloidal silver nanoparticles", The Journal of Chemical Physics, 116(15): 6755-6759.
  5. Kim, S. S., Na, S. I., Jo, J., Kim, D. Y., Nah, Y. C., (2008). "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles", Applied Physics Letters, 93(7): 073307.
  6. Logeswari, P., Silambarasan, S., Abraham, J., (2013). "Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties", Scientia Iranica, 20(3): 1049-1054.
  7. Saxena, A., Tripathi, R. M., Singh, R. P., (2010). "Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity", Dig. J. Nanomater. Bios., 5(2): 427-432.
  8. Yeo, S. Y., Lee, H. J., Jeong, S. H., (2003). "Preparation of nanocomposite fibers for permanent antibacterial effect", Journal of Materials Science, 38(10): 2143-2147.
  9. Zhao, G., Stevens Jr, S. E., (1998). "Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion", Biometals, 11(1): 27-32.

10. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, Y. K., (2007). "Antimicrobial effects of silver nanoparticles", Nanomedicine: Nanotechnology, Biology and Medicine, 3(1): 95-101.

11. Meng, X. K., Tang, S. C., Vongehr, S., (2010). "A review on diverse silver nanostructures", Journal of Materials Science & Technology, 26(6): 487-522.

12. Wani, I. A., Khatoon, S., Ganguly, A., Ahmed, J., Ganguli, A. K., Ahmad, T., (2010). "Silver nanoparticles: Large scale solvothermal synthesis and optical properties", Materials Research Bulletin, 45(8): 1033-1038.

13. Wani, I. A., Ganguly, A., Ahmed, J., Ahmad, T., (2011). "Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies", Materials Letters, 65(3): 520-522.

14. Wani, I. A., Khatoon, S., Ganguly, A., Ahmed, J., Ahmad, T., (2013). "Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method", Colloids and Surfaces B: Biointerfaces, 101: 243-250.

15. Ahmad, T., Wani, I. A., Manzoor, N., Ahmed, J., Asiri, A. M., (2013). "Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles", Colloids and Surfaces B: Biointerfaces, 107: 227-234.

16. Sharma, V. K., Yngard, R. A., & Lin, Y., (2009). "Silver nanoparticles: green synthesis and their antimicrobial activities", Advances in colloid and interface science, 145(1): 83-96.

17. Bhaduri, G. A., Little, R., Khomane, R. B., Lokhande, S. U., Kulkarni, B. D., Mendis, B. G., Šiller, L., (2013). "Green synthesis of silver nanoparticles using sunlight", Journal of Photochemistry and Photobiology A: Chemistry, 258: 1-9.

18. Sowbarnika, R., Anhuradha, S., Preetha, B., (2018). "Enhanced antimicrobial effect of yeast mediated silver nanoparticles synthesized from baker’s yeast", International Journal of Nanoscience and Nanotechnology, 14: 33-42.

19. Iqbal, T., Tufail, S., Ghazal, S., (2017). "Synthesis of silver, chromium, manganese, tin and iron nano particles by different techniques", International Journal of Nanoscience and Nanotechnology, 13: 19-52.

20. Kurian, M., Varghese, B., Athira, T. S., Krishna, S., (2016). "Novel and efficient synthesis of silver nanoparticles using curcuma longa and zingiber officinale rhizome extracts", International Journal of Nanoscience and Nanotechnology, 12: 175-181.

21. Horvath, I. T., Anastas, P. T., (2007). "Innovations and green chemistry", Chemical reviews, 107(6): 2169-2173.

22. "Green Chemistry:  Designing Chemistry for the Environment", Edited by Paul T. Anastas, Tracy C. Williamson, ACS:  Washington, DC. J. Am. Chem. Soc., 1996, 118: 10945-10945.

23. Collins, T. J., (1997). "Green Chemistry Encyclopedia of Chemistry", Macmillan, New York

24. Anastas, P., Eghbali, N., (2010). "Green chemistry: principles and practice", Chemical Society Reviews, 39(1): 301-312.

25. Raveendran, P., Fu, J., Wallen, S. L., (2003). "Completely “green” synthesis and stabilization of metal nanoparticles", Journal of the American Chemical Society, 125(46): 13940-13941.

26. Tester, R. F., Karkalas, J., Qi, X., (2004). "Starch—composition, fine structure and architecture", Journal of Cereal Science, 39(2): 151-165.

27. Wang, H. C., Lee, A. R., (2015). "Recent developments in blood glucose sensors", Journal of food and drug analysis, 23(2): 191-200.

28. Ortega‐Arroyo, L., Martin‐Martinez, E. S., Aguilar‐Mendez, M. A., Cruz‐Orea, A., Hernandez‐Pérez, I., Glorieux, C., (2013). "Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response", StarchStärke, 65(9‐10): 814-821.

29. Berne, B. J. Pecora, R., (2000). "Dynamic light scattering: with applications to chemistry, biology, and physics", Courier Dover Publications

30. Bedi, R. S., Cai, R., O’Neill, C., Beving, D. E., Foster, S., Guthrie, S., Yan, Y., (2012). "Hydrophilic and antimicrobial Ag-exchanged zeolite a coatings: A year-long durability study and preliminary evidence for their general microbiocidal efficacy to bacteria, fungus and yeast", Microporous and Mesoporous Materials, 151: 352-357.