Dynamic Simulation of CNTFET-Based Digital Circuits

Document Type : Research Paper

Authors

1 Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy.

2 Electronic Devices Laboratory, Department of Electrical and Information Engineering, Polytechnic University of Bari, Italy.

Abstract

   In this paper we propose a simulation study to carry out dynamic analysis of CNTFET-based digital circuit, introducing in the semi-empirical compact model for CNTFETs, already proposed by us, both the quantum capacitance effects and the sub-threshold currents. To verify the validity of the obtained results, a comparison with Wong model was carried out. Our model may be easily implemented both in SPICE and in Verilog-A, obtaining, in this last case, the development time in writing the model shorter, the simulation run time much shorter and the software much more concise and clear than Wong model.

Keywords


  1.  Avouris, Ph., Radosavljević, M., Wind, S. J. (2005). “Carbon Nanotube Electronics and Optoelectronics”, in: Rotkin SV, Subramone S, editors. Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices, Berlin Heidelberg; Springer-Verlag.
  2. Perri, A. G. (2016). “Fondamenti di Dispositivi Elettronici Avanzati”, Ed. Progedit, Bari, Italy.
  3. Perri, A. G. (2016). “Dispositivi Elettronici Avanzati Avanzati”, Ed. Progedit, Bari, Italy.
  4. Gelao, G., Marani, R., Diana, R., Perri,  A. G. (2011). “A Semi-Empirical SPICE Model for n-type Conventional CNTFETs”, IEEE Transactions on Nanotechnology, 10(3): 506-512.
  5. Marani, R., Perri, A. G. (2011). “A Compact, Semi-empirical Model of Carbon Nanotube Field Effect Transistors oriented to Simulation Software”, Current Nanoscience, 7(2): 245-253.
  6. Marani, R., Perri, A. G. (2012). “A DC Model of Carbon Nanotube Field Effect Transistor for CAD Applications”, International Journal of Electronics, 99(3): 427- 444.
  7. Marani, R., Gelao, G., Perri,  A. G. (2012). “Comparison of ABM SPICE library with Verilog-A for Compact CNTFET model implementation”, Current Nanoscience, 8(4): 556-565.
  8. Marani, R., Gelao, G., Perri,  A. G. (2013).  “Modelling of Carbon Nanotube Field Effect Transistors oriented to SPICE software for A/D circuit design”, Microelectronics Journal, 44(1): 33-39.
  9. Marani, R., Perri,  A. G. (2016). “A Simulation Study of Analogue and Logic Circuits with CNTFETs”, ECS Journal of Solid State Science and Technology, 5(6): M38-M43.
  10. Marani, R., Perri,  A. G. (2017). “A Study of Static Analysis in CNTFET-based Digital Circuits”, submitted to International Journal of Nanoscience and Nanotechnology.
  11. Lee, C-S., Pop, E., Franklin, A.D., Haensch, W., Wong, H.-S. P. (2015). “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nmRegime—Part I: Intrinsic Elements”,.IEEE Transactions on Electron Devices, 62(9): 3061-3069.
  12. Lee, C-S., Pop, E., Franklin, A. D., Haensch, W., Wong, H.-S. P. (2015). “A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment, and Design Optimization”,. IEEE Transactions on Electron Devices, 62(9): 3070-3078.
  13. Marani, R., Perri,  A. G. (2016). “Analysis of CNTFETs Operating in SubThreshold Region for Low Power Digital Applications”, ECS Journal of Solid State Science and Technology, 5(2): M1-M4.
  14. Verilog-AMS language reference manual, Version 2.2, Accellera International, Inc., (2006).
  15. Marani, R., Perri,  A. G. (2017). “CNTFET Electronics: Design Principles”, Ed. Progedit, Bari, Italy, ISBN 978-88-6194-307-0.
  16. Luo, J., Wei, L., Lee, C-S., Guam, X., Pop, E., Antoniadis, A., Wong, H.-S. P. (2013). “Compact Model for Carbon Nanotube Field-Effect Transistors Including Nonidealities and Calibrated With Experimental Data Down to 9-nm Gate Length”,IEEE Transactions on Electron Devices, 60(6): 1834-1843.
  17. Deng, J.,  Wong, H.-S. P. (2007). “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region”,.IEEE Transactions on Electron Devices, 54(12): 3186-3194.
  18. Deng, J.,  Wong, H.-S. P. (2007). “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking”, IEEE Transactions on Electron Devices, 54(12): 3195-3205.
  19. Gelao, G., Marani, R., Perri,  A. G. (2016). “A Comparison of Temperature Dependence of I-V Characteristics in CNTFETs Models”, Current Nanomaterials, 1(1): 61-68.
  20. Marani, R., Perri,  A. G. (2016). “A DC Thermal Model of Carbon Nanotube Field Effect Transistors for CAD Applications”, ECS Journal of Solid State Science and Technology, 5(8): M3001-M3004.
  21. Marani, R., Perri,  A. G. (2017). “Effects of Temperature Dependence of Energy Band Gap on  I-V Characteristics in CNTFETs Models”, International Journal of Nanoscience, 16(05n06).
  22. Marani, R., Gelao, G., Perri, A. G. (2017). “A Compact Noise Model for C-CNTFETs”, ECS Journal of Solid State Science and Technology, 6(4): M118-M126.