Fe3O4/CNT Magnetic Nanocomposites as ‎Adsorbents to Remove Organophosphorus ‎Pesticides from Environmental Water

Document Type : Research Paper


1 Department of Chemistry, Imam Hossein University, Tehran, Iran.‎

2 Advanced Materials and Nanotechnology Research Center, Imam Hossein University, Tehran, ‎Iran.‎


   In this study, a method for extraction and preconcentration of trace amounts of organophosphorus pesticides (OPPs) in environmental water using magnetic solid phase extraction (magnetic-SPE) followed by high performance liquid chromatography (HPLC) with UV detection was developed. The magnetic carbon nanotube adsorbents (Fe3O4/CNT) were synthesized by grafting carbon nanotubes to magnetic Fe3O4 particles by a facile hydrothermal method. The synthesized Fe3O4/CNT nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). These nanoparticles were used for extraction and preconcentration of OPPs (fenitrothion, profonofus, and ethion) in environmental water samples at low concentration. The influence of four variables including adsorption time, weight of sorbent, salt addition, and pH in the extraction process were predicted and optimized by Response Surface Method (RSM). Under optimized conditions, it showed good linearity between 0.5-10, 0.5-10, 0.5-30 ng ml-1 with determination coefficients (R2) of 0.993, .0995, and 0.994 for extraction of ethion, profonofus, and fenitrothion, respectively. Limit of detection (LOD) for extraction of ethion, profonofus, and fenitrothion were also evaluated under optimized conditions as 0.124, 0.097, and 0.108, respectively. The analysis also showed good reproducibility with the RSD values 4.4, 2.7, and 4.5 at the 10 ng ml-1 level (n = 5) for ethion, profonofus, and fenitrothion, respectively.


  1. Kavlock, R. J., Daston, G. P., DeRosa, C., Fenner-Crisp, P., Gray, L. E., Kaattari, S., Lucier, G., Luster, M., Mac, M.J., Maczka, C., Miller, R. (1996). “Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop”, Environ. Health Persp., 104 (Suppl 4): 715.
  2. Costa, L. G. (2006). “Current issues in organophosphate toxicology”, Clin. Chim. Acta, 366(1): 1-13.
  3. Günther, A., Bilitewski, U. (1995). “Characterisation of inhibitors of acetylcholinesterase by an automated amperometric flow-injection system”, Anal. Chim. Acta, 300(1): 117-125.
  4. Hierons, R., Johnson, M. K. (1978). “Clinical and toxicological investigations of a case of delayed neuropathy in man after acute poisoning by an organophosphorus pesticide”, Arch. Toxicol., 40(4): 279-284.
  5. Sankararamakrishnan, N., Sharma, A. K., Sanghi, R. (2005). “Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India”, Environ. Int., 31(1): 113-120.
  6. Berijani, S., Assadi, Y., Anbia, M., Hosseini, M. R. M., Aghaee, E. (2006). “Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water”, J. Chromatogr. A, 1123(1): 1-9.
  7. Pérez-Ruiz, T., Martínez-Lozano, C., Sanz, A., Bravo, E. (2005). “Determination of Organophosphorus P sticides in Water, Vegetables and Grain by Automated SPE and MEKC”, Chromatographia, 61(9-10): 493-498.
  8. Berrada, H., Font, G., Molto, J. C. (2000). “Indirect analysis of urea herbicides from environmental water using solid-phase microextraction”, J. Chromatogr. A, 890(2): 303-312.
  9. Yao, Z. W., Jiang, G. B., Liu, J. M., Cheng, W. (2001). “Application of solid-phase microextraction for the determination of organophosphorous pesticides in aqueous samples by gas chromatography with flame photometric detector”, Talanta, 55(4): 807-814.
  10. Ahmadi, F., Assadi, Y., Hosseini, S. M., Rezaee, M. (2006). “Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector”, J. Chromatogr. A, 1101(1): 307-312.
  11. Samadi, S., Sereshti, H., Assadi, Y. (2012). “Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid–liquid microextraction and gas chromatography with flame photometric detection”, J. Chromatogr. A, 1219: 61-65.
  12. Ingelse, B. A., Van Dam, R. C., Vreeken, R. J., Mol, H. G., Steijger, O. M. (2001). “Determination of polar organophosphorus pesticides in aqueous samples by direct injection using liquid chromatography–tandem mass spectrometry”, J. Chromatogr. A, 918(1): 67-78.
  13. Xu, Z. L., Wang, Q., Lei, H. T., Eremin, S. A., Shen, Y. D., Wang, H., Beier, R.C., Yang, J.Y., Maksimova, K.A., Sun, Y. M. (2011). “A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples”, Anal. Chim. Acta, 708(1): 123-129.
  14. Aguilar, C., Penalver, S., Pocurull, E., Borrull, F., Marcé, R. M. (1998). “Solid-phase microextraction and gas chromatography with mass spectrometric detection for the determination of pesticides in aqueous samples”, J. Chromatogr. A, 795(1): 105-115.
  15. Beltran, J., Lopez, F. J., Cepria, O., Hernandez, F. (1998). “Solid-phase microextraction for quantitative analysis of organophosphorus pesticides in environmental water samples”, J. Chromatogr. A, 808(1): 257-263.
  16. Bolygo, E., Atreya, N. C. (1991). “Solid-phase extraction for multi-residue analysis of some triazole and pyrimidine pesticides in water”, Fresen. J. Anal. Chem., 339(6): 423-430.
  17. Gonçalves, C., Alpendurada, M. F. (2004). “Solid-phase micro-extraction–gas chromatography–(tandem) mass spectrometry as a tool for pesticide residue analysis in water samples at high sensitivity and selectivity with confirmation capabilities”, J. Chromatogr. A, 1026(1): 239-250.
  18. Fu, L., Liu, X., Hu, J., Zhao, X., Wang, H., Wang, X. (2009). “Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples”, Anal. Chim. Acta, 632(2): 289-295.
  19. Alves, A. C. H., Gonçalves, M. M. P. B., Bernardo, M. M. S., Mendes, B. S. (2011). “Determination of organophosphorous pesticides in the ppq range using a simple solid‐phase extraction method combined with dispersive liquid–liquid microextraction”, J. Sep. Sci., 34(18): 2475-2481.
  20. Moliner-Martinez, Y., Vitta, Y., Prima-Garcia, H., González-Fuenzalida, R. A., Ribera, A., Campíns-Falcó, P., Coronado, E. (2014). “Silica supported Fe3O4 magnetic nanoparticles for magnetic solid-phase extraction and magnetic in-tube solid-phase microextraction: application to organophosphorous compounds”, Anal. Bioanal. Chem., 406(8): 2211-2215.
  21. Kolaei, M., Dashtian, K., Rafiee, Z., Ghaedi, M. (2016). “Ultrasonic-assisted magnetic solid phase extraction of morphine in urine samples by new imprinted polymer-supported on MWCNT- Fe3O4-NPs: Central composite design optimization”, Ultrason. Sonochem., 33: 240-248.
  22. Shen, H. Y., Zhu, Y., Wen, X. E., Zhuang, Y. M. (2007). “Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides”, Anal. Bioanal. Chem., 387(6): 2227-2237.
  23. Ahmadi, F., Rajabi, M., Faizi, F., Rahimi-Nasrabadi, M., Maddah, B. (2014). “Magnetic solid-phase extraction of Zineb by C18-functionalised paramagnetic nanoparticles and determination by first-derivative spectrophotometry”, Int. J. Environ. An. Ch., 94(11): 1123-1138.
  24. Maddah, B., Alidadi, S., Hasanzadeh, M. (2016). “Extraction of organophosphorus pesticides by carbon‐coated Fe3O4 nanoparticles through response surface experimental design”, J. Sep. Sci., 39(2): 256-263.
  25. Tahmasebi, E., Yamini, Y., Mehdinia, A., Rouhi, F. (2012). “Polyaniline‐coated Fe3O4 nanoparticles: An anion exchange magnetic sorbent for solid‐phase extraction”, J. Sep. Sci., 35(17): 2256-2265.
  26. Hamidi Malayeri, F., Sohrabi, M. R., & Ghourchian, H. (2012). “Magnetic multi-walled carbon nanotube as an adsorbent for toluidine blue o removal from aqueous solution”, Int. J. Nanosci. Nanotechnol., 8(2): 79-86.
  27. Kolangikhah, M., Maghrebi, M., Ghazvini, K., & Farhadian, N. (2012). “Separation of Salmonella Typhimurium Bacteria from Water Using MWCNTs Arrays”, Int. J. Nanosci. Nanotechnol.8(1): 3-10.
  28. Long, R. Q., Yang, R. T. (2001). “Carbon nanotubes as superior sorbent for dioxin removal”, J. Am. Chem. Soc., 123(9): 2058-2059.
  29. Li, H., Zhang, D., Han, X., Xing, B. (2014). “Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics”, Chemosphere, 95: 150-155.
  30. Kah, M., Zhang, X., Jonker, M. T., Hofmann, T. (2011). “Measuring and modeling adsorption of PAHs to carbon nanotubes over a six order of magnitude wide concentration range”, Environ. Sci. Technol., 45(14): 6011-6017.
  31. Peng, S., Cho, K. (2003). “Ab initio study of doped carbon nanotube sensors”, Nano Lett., 3(4): 513-517.
  32. Lu, C., Chung, Y. L., Chang, K. F. (2005). “Adsorption of trihalomethanes from water with carbon nanotubes”, Water Res., 39(6): 1183-1189.
  33. Yan, X. M., Shi, B. Y., Lu, J. J., Feng, C. H., Wang, D. S., Tang, H. X. (2008). “Adsorption and desorption of atrazine on carbon nanotubes”, J. Colloid Interf. Sci., 321(1): 30-38.
  34. Li, S., Gong, Y., Yang, Y., He, C., Hu, L., Zhu, L., Sun, L., Shu, D. (2015). “Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration”. Chem. Eng. J., 260: 231-239.
  35. Maddah, B., Shamsi, J. (2012). “Extraction and preconcentration of trace amounts of diazinon and fenitrothion from environmental water by magnetite octadecylsilane nanoparticles”, J. Chromatogr. A, 1256: 40-45.
  36. Li, Y. S., Church, J. S., Woodhead, A. L., Moussa, F. (2010). “Preparation and characterization of silica coated iron oxide magnetic nano-particles”, Spectrochim. Acta A, 76(5): 484-489.
  37. Wang, Q., Jiao, L., Du, H., Wang, Y., Yuan, H. (2014). “Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors”, J. Power Sources, 245: 101-106.
  38. Shakourian-Fard, M., Rezayan, A. H., Kheirjou, S., Bayat, A., Hashemi, M. M. (2014). “Synthesis of α-Aminophosphonates in the Presence of a Magnetic Recyclable Fe 3 O 4@ SiO2-2mimSO 3 H Nanocatalyst”, B. Chem. Soc. Jpn., 87(9): 982-987.
  39. Bayat, A., Shakourian-Fard, M., Hashemi, M. M. (2014). “Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide”, Catal. Commun., 52: 16-21.
  40. Bayat, A., Shakourian-Fard, M., Ehyaei, N., Hashemi, M. M. (2014). “A magnetic supported iron complex for selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide at room temperature”, RSC Advances, 4(83): 44274-44281.
  41. Lu, C., Chung, Y. L., Chang, K. F. (2006). “Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes”, J. Hazard. Mater., 138(2): 304-310.
  42. Ahmadi, F., Rezaei, H., Tahvilian, R. (2012). “Computational-aided design of molecularly imprinted polymer for selective extraction of methadone from plasma and saliva and determination by gas chromatography”, J. Chromatogr. A, 1270: 9-19.
  43. Ahmadi, F., Asgharloo, H., Sadeghi, S., Gharehbagh-Aghababa, V., Adibi, H. (2009). “Post-derivatization procedure for determination of hippuric acid after extraction by an automated micro solid phase extraction system and monitoring by gas chromatography”, J. Chromatogr. B, 877(27): 2945-2951.