Investigation of Molecular Selenium ‎Adsorption to the Outer Surface of Single ‎Wall Carbon Nanotubes

Document Type : Research Paper


1 Department Of Chemistry, Faculty of Science, Payam noor University of Kerman, Iran.‎

2 Department of New Materials, Institute of Science and High Technology and Environmental ‎Sciences, Graduate University of Advanced Technology, PO Box 76315-117, Kerman, Iran.

3 Department of Chemistry, Shahid Bahonar University of Kerman, PO Box 76169-133 Iran.‎

4 Department ‎of New Materials, Institute of Science and High Technology and Environmental Sciences, ‎Graduate University of Advanced Technology, PO Box 76315-117, Kerman, Iran.

5 Department of Materials Science and Metallurgy, University of Sistan and Baluchestan, ‎Zahedan, Iran.‎


   In this study the adsorption of selenium molecule (Se2) on the outer surface of zigzag (5,0), (8,0) and (10,0) carbon nanotubes has been investigated. We examined number adsorbed orientations as well as different adsorption sites on nanotubes. The adsorption energies, equilibrium distances, energy differences between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and interaction angles between nanotubes and selenium molecule have been studied in details. The results showed that the best angle of the selenium molecule with the nanotubes is zero degree. Selenium adsorption on the external surface of zigzag nanotubes increased their electrical conductivity. It is found that an increase in nanotubes diameter leads to an increase in their stability. The adsorption energy values of selenium molecule on the surface of zigzag (5,0) and (8,0) nanotubes was low and negative; therefore this was a physical adsorption and exothermic. Independent to the orientation, the adsorption process of Se2 on (10,0) nanotube showed chemisorption with large charge transfer from nanotube to adsorbed molecule.


  1. Iijima, S. (1991). “Helical Microtubes of Graphitetic Carbon”, Nature, 354: 56–58.
  2. Moradi, O., Yari, M., Zare, K., Mirza, B., Najafi, F. (2012). “Carbon Nanotubes: A Review of Chemistry Principles and Reactions”, Fullerenes, Nanotubes and Carbon Nanostructures, 20: 138–151.
  3. Charlier, J. C., Blase, X., Roche, S. (2007). “Electronic and Transport Properties of Nanotubes”, Rev. Mod. Phys., 79: 677-711.
  4. Baughman, R. H., Zakhidov, A. A., de Heer. W. A. (2002). “Carbon Nanotubes - The Route toward Applications”, Science, 297: 787-792.
  5. Hamada, N., Sawada, S. I., Oshiyama, A. (1992). “New One-Dimensional Conductors: Graphitic Microtubules”, Phys. Rev. Lett., 68: 1579-1581.
  6. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M. S. (1992). “Electronic Structure of Chiral Graphene Tubules”, Appl. Phys. Lett., 60: 2204-2206.
  7. Odom, T. W., Huang, J. L., Kim, P., Lieber, C. M. (1998) "Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes”, Nature, 391:62-64.
  8. Jishi, R. A., Bragin, J., Lou, L. (1999) “Electronic Structure of Short and Long Carbon Nanotubes from First Principles”, Phys. Rev. B, 59: 9862-9865.
  9. Gulseren, O., Yildirim, T., Ciraci, S. (2002) “Systematic ab initio Study of Curvature Effects in Carbon Nanotubes”, Phys. Rev. Lett., 65:153405(1-4).

10. Dresselhaus, M. S., Dresselhaus G., Jorio, A. (2004) “Unusual Properties and Structure of Cnanotubes”, Annu. Rev. Matter. Res.,34:247–278.

11. Dresselhaus, M. S., Dresselhaus, G., Charlier, J. C., Hernandez, E. (2004) “Electronic, Thermal and Mechanical Properties of Carbon Nanotubes, in Nanotechnology of Carbon and Related Materials”, Philos. Trans. R. Soc. London, Ser. A, 362: 2065-2209.

12. Collins, P. G., Bradley, K., Ishigami, M., Zettl, A. (2000) “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes”, Science, 287: 1801-1804.

13. Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S.; Cho, K., Dai, H. (2000) “Nanotube Molecular Wires as Chemical Sensors”, Science, 287: 622-625.

14. Dag, S., Gulseren, O., Ciraci, S. (2003) “A Comparative Study of O2 Adsorbed Carbon Nanotubes”, Chem. Phys. Lett., 380: 1-5.

15. Lithoxoos, G. P., Labropoulos, A., Peristeras, L. D., Kanellopoulos, N., Samios, J., Economou I. G. (2010) “A Combined Experimental and Monte Carlo Molecular Simulation Study”, J. Supercrit. Fluid, 55: 510–523.

16. Rafati, A. A., Hashemianzadeh, S. M., Nojini, Z. B. (2009) “Effect of the Adsorption of Oxygen on Electronic Structures and Geometrical Parameters of Armchair Single-Wall Carbon Nanotubes: A Density Functional Study”, J. Colloid and Interface Sci., 336: 1–12.

17. Javid, A. H., Gorannevis, M., Moattar, F., Mashinchian Moradi, A., Saeeidi P. (2013) “Modeling of Benzene Adsorption in the Gas Phase on Single-Walled Carbon Nanotubes for Reducing Air Pollution”, Int. J. Nanosci. Nanotechnol., 9: 227-234.

18. Davoodi, J., Alizade, H., (2011) “Radius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array”, Int. J. Nanosci. Nanotechnol., 7: 143-146.

19. Hohenberg, P., Kohn, W. (1964), “Inhomogeneous Electron Gas”, Phys. Rev. B, 136: 864-871.

20. Kohn, W., Sham, L. J. (1965), “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. A, 140: 1133-1138.

21. Collins, P. G., Bradley, K., Ishigami, M., Zettl, A. (2000), “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes”, Science, 287: 1801-1804.

22. Zhou, Y., Sreekala, S., Ajayan, P. M., Nayak, S. K. (2008), “Resistance of Copper Nanowires and Comparison with Carbon nanotube Bundles for Interconnect Applications using First Principles Calculations”, J. Phys.: Condens. Matter, 20: 095209(1-5).

23. Fagan, S. B., Fazzio, A., Mota, R. (2006), “Titanium Monomers and Wires Adsorbed on Carbon Nanotubes: A First Principle Study”, Nanotechnology, 17: 1154-1159.

24. Yang, C. K., Zhao, J., Lu J. P. (2002) “Binding Energies and Electronic Structures of Adsorbed Titanium Chains on Carbon Nanotubes”, Phys. Rev. B, 66: 041403(1-4).

25. Yang, C. K., Zhao, J., Lu, J. P. (2004) “Complete Spin Polarization for A Carbon Nanotube with an Adsorbed Atomic Transition-Metal Chain”, Nano Lett., 4: 561-563.

26. Voggu, R., Pal, S., Pati, S. K., Rao, C. N. R. (2008) “Semiconductor to Metal Transition in SWNT Caused by Interaction with Gold and Platinum Nano Particles”, J. Phys.: Condens. Matter, 20: 215211(1-16).

27. Kim, Y. L., Li, B., An, X., Hahm, M. G., Chen, L., Washington, M., Ajayan, P. M., Nayak, S. K., Busnaina, A., Kar, S., Jung, Y. J. (2009) “Highly Aligned Scalable Platinum-Decorated Single-Wall Carbon Nanotube Arrays for Nanoscale Electrical Interconnects”, ACS Nano, 3: 2818-2826.

28. Dag, S., Durgun, E., Ciraci, S. (2004) “Nanotechnology-An Introduction for the Standards Community”, Phys. Rev. B, 69: 121407(1-4).

29. Han, S. S., Hyuck, M. L. (2004) “Adsorption Properties of Hydrogen on (10,0) Single-Walled Carbon Nanotube through Density Functional Theory”, Carbon, 42: 2169-2177.

30. Gates, B., Mayers, B., Cattle, B., Xia, Y. N. (2002), “Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium”, Adv. Funct. Mater. 12: 219–227.

31. Li, X., Li, Y., Li, S., Zhou, W., Chu, H., Chen, W., Li, I. L., Tang, Z. (2005) “Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process”, Cryst. Growth Des. 5: 911-916.

32. Zhang, X. Y., Xu, L. H., Dai, J. Y., Cai, Y., Wang, N. (2006) “Photoconductivity of Single-Crystalline Selenium Nanotubes”, Mater. Res. Bull. 41: 1729-1734.

33. Liu, P., Ma, Y., Cai, W., Wang, Z., Wang, J., Qi, L., Chen, D. (2007) “Photoconductivity of Single-Crystalline Selenium Nanotubes”, Nanotechnology, 18: 205704-205716.

34. Krishnan, S., Yilmaz, H., Vadapoo, R., Marin, C. (2010) “Selenium Adsorbed Single Wall Carbon Nanotubes as a Potential Candidate for Nanoscale Interconnects”, Appl. Phys. Lett. 97: 163107(1-3).

35. Bergoli, R., Mota, R, Zanella, I. ,da Silva, L. B. ,Fagan, S. B. (2011) “Selenium Nanostructures Adsorbed on Carbon Nanotubes: A DFT Investigation”, J. Comput. Theor. Nanosci. 8: 1710-1715.

36. Frey, J. T.; Doren, D. J. (2011) Tube Gen 3.4; University of Delaware, Newark, DE.

37. Beche A. D. (1993) “Density-Functional Thermochemistry. III. The Role of Exact Exchange”, J. Chem. Phys. 98: 5648-5652.

38. Lee, C. T., Yang, W. T., Parr, R. G. (1988) “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density”, Phys. Rev. B, 37: 785-789.

39. Hay, P. J., Wadt, W. R. (1985) “Ab initio Effective Core Potentials for Molecular Calculations. Potentials for Transition Metal Atoms Sc to Hg” J. Chem. Phys. 82: 270-283.

40. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K. Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, W., Morokuma, P. Y., Voth, K., Salvador, G. A., Dannenberg, P., Zakrzewski, J. J., Dapprich, V. G., Daniels, S., Strain, A. D., Farkas, M. C., Malick, O., Rabuck, D. K., Raghavachari, A. D., Foresman, K., Ortiz, J. B., Cui, J. V., Baboul, Q., Clifford, A. G., Cioslowski, S., Stefanov, J., Liu, B., Liashenko, B., Piskorz, G. A., Komaromi, P., Martin, I., Fox, R. L., Keith, D. J. T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. (2003) Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburg, PA.

41. Mpourmpakis, G., Tylianakis, E., Froudakis, G. E. (2007) “Carbon Nanoscrolls:  A Promising Material for Hydrogen Storage”, Nano Lett., 7: 1893-1897.

42. Mpourmpakis, G., Froudakis, G. E. (2007) “Why Boron Nitride Nanotubes Are Preferable to Carbon Nanotubes for Hydrogen Storage? An ab initio Theoretical Study”, Catal. Today, 120: 341-345.

43. Baei, M. T., Soltani, A. R., Moradi, A. V., Lemeski, E. T. (2011) “Adsorption Properties of NO on (6, 0), (7, 0), and (8, 0) Zigzag Single-Walled Boron Nitride Nanotubes: A Computational Study”, Comput. Theor. Chem., 970: 30-35.

44. Chen, Z., Nagase, S., Hirsch, A. C., Haddon, R., Thiel, W., Schleyer P. von R. (2004) “Side-Wall Opening of Single-Walled Carbon Nanotubes (SWCNTs) by Chemical Modification: A Critical Theoretical Study”, Angew. Chem., 116: 1578-1580.

45. Bai, J., Zeng, X. C., Tanaka, H., Zeng, J. Y. (2004) “Metallic Single-Walled Silicon Nanotubes”, Proc. Natl. Ac. Sci., 101: 2664-2668.

46. Yeung, C. S., Chen, Y. K., Wang, Y. A. (2010) “Theoretical Studies of Substitutionally Doped Single-Walled Nanotubes”, J. Nanotechnol. 2010: 801789(1–42).

47. Chen, Y. K., Liu, L. V., Tian, W. Q., Wang, Y. A. (2011) “ Theoretical Studies of Transition–Metal–Doped Single–Walled Carbon Nanotubes”, J. Phys. Chem. C, 115: 9306–9311.

48. Abadir, G. B., Walus,K., Pulfrey, D. L. (2008) “Basis-Set Choice for DFT/NEGF Simulations of Carbon Nanotubes”, J. Comput. Electron. 8: 35-42.

49. Boys S. F., Bernardi, F. (1970) “The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors”, Mol. Phys. 19: 553-566.

50. Reed, A. E., Curtiss L. A., Weinhold, F. A. (1988) “"Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint", Chem. Rev., 88: 899–926.

51. Pinto, H., Markevich, A. (2014) “Electronic and Electrochemical Doping of Graphene by Surface Adsorbates”, Beilstein J. Nanotechnol., 5: 1842–1848.

52. Omidvar, A., Mohajeri A. (2015) “Promotional Effect of the Electron Donating Functional Groups on the Gas Sensing Properties of Graphene Nanofakes”, RAS Adv. 5: 54535-54543.