Magneto Effects on Fe3O4 Nanoparticles ‎through the Triangular and Rectangular ‎Baffles on Thread Stretching Surface for ‎Rotary Seals in Computer Hardware

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, ‎Iran

2 UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, ‎ Kuala Lumpur, Malaysia

Abstract

   In this paper, variation of temperature and velocity profiles and the angular velocity of the nanofluid flow through triangular and rectangular baffles are investigated in the existence of a uniform magnetic field. The innovation of this paper is the investigation of nanofluid parameters passing on the different baffles on the stretching surface using the Finite Element Method. According to the results of different cases, the maximum nanofluid velocity is observed in rectangular baffles. The fluid velocity for nanofluid on the rectangular baffles is 19.5% more than on other baffles. At X=0.2 to X=0.8 for rectangular baffles and triangular baffles, the average velocity of nanofluid flow in the rectangular baffles is equal to u=0.4 but, the average velocity of nanofluid flow in the triangular baffles is u=0.04. The maximum nanofluid temperature is observed in rectangular and triangular baffles. The temperature profiles of nanofluid on the rectangular and triangular baffles are 50% more than other baffles.

Keywords

Main Subjects


  1. Maghsoudi, A. A., Soheil, M. J., Darbhenz, A.,“Effect of the Nano Particles in the New Generation of Concretes, SCC”, J. Nanosci. Nanotechnol., 6 (2010) 137–143.
  2. Ghozatloo, A., Shariaty Niassar, M., Rashidi, A.,Effect of Functionalization Process on Thermal Conductivity of Graphene Nanofluids”, J. Nanosci. Nanotechnol., 13 (2017) 11–18.
  3. Gangaiah, T., Saidulu, N., Venkata Lakshmi, A.,“The influence of thermal radiation on mixed convection MHD flow of a casson nanofluid over an exponentially stretching sheet”, J. Nanosci. Nanotechnol., 15 2 (2019) 83–98.
  4. Peiravi, M. M., Alinejad, J., “3D Numerical Simulation of Fibers Arrangement Effects on Thermal Conductivity of Polymer Matrix Composite”, Mechanics of Advanced Composite Structures, 9 (2022) 59–73.
  5. Ji-Huan, H., Mostapha, D. R.,“Insight into the Significance of Hall Current and Joule Heating on the Dynamics of Darcy–Forchheimer Peristaltic Flow of Rabinowitsch Fluid”, Journal of Mathematics, 2021.
  6. Ji-Huan, H., Abd Elazem, N. Y., “Insights into Partial Slips and Temperature Jumps of a Nanofluid Flow over a Stretched or Shrinking Surface”, Energies, 14 (2021) 1-21.
  7. Ji-Huan, H., Moatimid, G. M., Mostapha, D. R.,“Nonlinear instability of two streaming-superposed magnetic Reiner-Rivlin Fluids by He-Laplace method”, Journal of Electroanalytical Chemistry, 895 (2021).
  8. Peiravi, M. M., Alinejad, J., Hybrid Conduction, Convection and Radiation Heat Transfer Simulation in A Channel with Rectangular Cylinder”, Journal of Thermal Analysis and Calorimetry, 140 (2019) 2733-2747.
  9. Araban, H. P., Alinejad, J., Peiravi, M. M., “Entropy generation and hybrid fluid-solid-fluid heat transfer in 3D multi-floors enclosure”, International Journal of Exergy, 37 (2022) 337-357.
  10. Peiravi, M. M., Alinejad, J., “Nano Particles Distribution Characteristics in Multi-Phase Heat Transfer between 3D Cubical Enclosures Mounted Obstacles”, Alexandria Engineering Journal, 60 (2021) 5025-5038.
  11. Ramya, D., Rao, J. A., Shravani, I., “Numerical Simulation of MHD Boundary ‎Layer Stagnation Flow of Nanofluid over a ‎Stretching Sheet with Slip and Convective ‎Boundary Conditions”, Journal Of Nanotechnology, 16 (2020) 103-115.
  12. Peiravi, M. M., Alinejad, J.,“Numerical analysis of secondary droplets characteristics due to drop impacting on 3d cylinders considering dynamic contact angle”,Meccanica, 55 (2020) 1975–2002.
  13. Ramya, D., Rao, J. A., & Shravani, I.,“Numerical Simulation of MHD Boundary‎ Layer Stagnation Flow of Nanofluid over a‎ Stretching Sheet with Slip and Convective‎ Boundary Conditions”, International Journal of Nanoscience and Nanotechnology, 16 (2020) 103-115.‏
  14. Gangaiah, T., Saidulu, N., Venkata Lakshmi, A., “The Influence of Thermal Radiation on‎ Mixed Convection MHD Flow of a Casson‎ Nanofluid over an Exponentially Stretching‎ Sheet”, International Journal of Nanoscience and Nanotechnology, 15 (2019) 83-98.‏
  15. Ghozatloo, A., Shariaty Niassar, M., Rashidi, A.,“Effect of functionalization process on thermal conductivity of graphene nanofluids”, International Journal of Nanoscience and Nanotechnology, 13 (2017) 11-18.‏
  16. Pushpa, B. V., Sankar, M., Mebarek-Oudina, F., “Buoyant Convective Flow and Heat Dissipation of Cu–H2O Nano liquids in an Annulus Through a Thin Baffle”, Journal of Nanofluids, 10 (2021) 292-304.
  17. Shafiq, A., Mebarek-Oudina, F., Sindhu, N. T., Abidi, A., “A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach”, The European Physical Journal Plus, 136 (2021).‏
  18. Swain, K., Mebarek-Oudina, F., Abo-Dahab, S.M., “Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions”, J Therm Anal Calorim, 147 (2022) 1561–1570.‏
  19. Mebarek-Oudina, F., Fares, R., Aissa, A., Lewis, R.W., Abu-Hamdehe, N. H.,Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall, International Communications in Heat and Mass Transfer, 125 (2021).‏
  20. Dadheech, P. K., Agrawal, P., Mebarek-Oudina, F., Abu-Hamdeh, N. H., Sharma, A., “Comparative Heat Transfer Analysis of MoS2/C2H6O2 and SiO2-MoS2/C2H6O2 Nanofluids with Natural Convection and Inclined Magnetic Field”, Journal of Nanofluids, 9 (2020) 161-167.‏
  21. Marzougui, S., Mebarek-Oudina, F., Magherbi, M., Mchirgui, A.,“Entropy generation and heat transport of Cu–water nanoliquid in porous lid-driven cavity through magnetic field”, International Journal of Numerical Methods for Heat & Fluid Flow, (2021).‏
  22. Ji-Huan, H., Na, Q., Chun-Hui, H., “Solitary waves travelling along an unsmooth boundary”, Results in Physics, 24 (2021).‏
  23. Ji-Huan, H., Wei-Fan, H., Chun-Hui, H., Saeed, T., Hayat, T., “variational approach to fractal solitary waves”, Fractals, 29 (2021).‏
  24. Jalili, B., Sadighi, S., Jalili, P., Ganji, D. D.,Characteristics of ferrofluid flow over a stretching sheet with suction and injection”, Case Studies in Thermal Engineering, 14 (2019).
  25. Brinkman, H.C., The viscosity of concentrated suspensions and solutions”, Chem. Phys., 20 (1952) 571-571.
  26. Bourantas, G.C., Loukopoulos, V.C., MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid, J. Heat Mass Transfer, 79 (2014) 930–944.
  27. Khan, U., Ahmed, N., Mohyud-Din, S. T., “Numerical investigation for three dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall Suspended by carbon nanotubes, Therm. Eng, 113 (2017) 1107–1117.