Cocoa Pod Husks as Precursors for Biosynthesis of Carbon Dots as Potential Bioimaging Tool

Document Type : Research Paper

Authors

1 Biophysics Laboratory, Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2 Nanomaterial Synthesis and Characterization Lab, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3 Malaysian Cocoa Board, 5 – 7th Floor, Wisma SEDCO, Lorong Plaza Wawasan, Off Coastal Highway, Locked Bag 211, 88999 Kota Kinabalu, Sabah, Malaysia

4 Department of Chemistry, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia

5 Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, Tobata Campus, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 804-8550, Japan

6 UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Abstract

   Recent zero-dimensional carbon dots (CDs) have dominated the world of nanomaterials due to their ease of synthesis and nature of their precursors. The aim of this study is to synthesize, characterize and evaluate cytotoxicity of CDs from agricultural waste CPH for its potential use in the bioimaging field. The TEM analysis and particle size distribution curve revealed that the particles had a diameter of 10-30 nm, sphere-shaped and exhibited lattice fringes with a d-spacing of 0.196 nm. XRD analysis revealed a broad peak at 2Ɵ = 20.71°, indicating the existence of carbon. FTIR confirmed the presence of multiple functional chemical groups on the surface of the CPH CDs consist of C=O, N–H, C–N, and C–O–C. Due to the electronic transition’s characteristic of CDs, the UV-Vis absorption spectrum revealed two distinct peaks at 235 and 293 nm.  PL spectra of CPH CDs revealed a red shift in the emission peak from 400 to 410 nm as the excitation wavelength increased from 320 to 380 nm. We used brine shrimp and human colon adenocarcinoma cells (Caco2) in vitro to determine the cytotoxicity of CPH CDs. In terms of brine shrimp assay, we found that 0.001 mg/ml showed lower lethality percentage with 57.93 ± 9.77 %.  The cytotoxicity of CPH CDs was assessed in vitro using the MTT assay and Caco2 cell line's viability decreased with increasing concentration (IC50 = 155 ug/ml). Due to their favorable properties and low cytotoxicity, CPH CDs have the potential to be used as bioimaging tools.

Keywords

Main Subjects


  1. Boakye-Yiadom, K. O., Kesse, S., Opoku-Damoah, Y., Filli, M. S., Aquib, M., Joelle, M. M. B., Farooq, M.A., Mavlyanova, R., Raza, F., Bavi, R., Wang, B., “Carbon dots: Applications in bioimaging and theranostics”, International journal of pharmaceutics, 564 (2019) 308-317.
  2. Das, P., Ganguly, S., Maity, P. P., Srivastava, H. K., Bose, M., Dhara, S., Bandyopadhyay, S., Das, A. K., Banerjee, S., Das, N. C., “Converting waste Allium sativum peel to nitrogen and sulphur co-doped photoluminescence carbon dots for solar conversion, cell labeling, and photobleaching diligences: a path from discarded waste to value-added products”, Journal of Photochemistry and Photobiology B: Biology, 197 (2019)
  3. Ghosh, S., Ghosal, K., Mohammad, S. A., Sarkar, K., “Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy”, Chemical Engineering Journal, 373 (2019) 468-484.
  4. Sun, Z., Chen, Z., Luo, J., Zhu, Z., Zhang, X., Liu, R., Wu, Z. C., “A yellow-emitting nitrogen-doped carbon dots for sensing of vitamin B12 and their cell-imaging”. Dyes and Pigments, 176 (2020)
  5. Shahshahanipour, M., Rezaei, B., Ensafi, A. A., Etemadifar, Z., “An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug”, Materials Science and Engineering: C, 98 (2019) 826-833.
  6. Shekarbeygi, Z., Farhadian, N., Khani, S., Moradi, S., Shahlaei, M. “The effects of rose pigments extracted by different methods on the optical properties of carbon quantum dots and its efficacy in the determination of Diazinon”, Microchemical Journal, 158 (2020)
  7. Senol, A. M., Bozkurt, E., “Facile green and one-pot synthesis of seville orange derived carbon dots as a fluorescent sensor for Fe3+ ions”, Microchemical Journal, 159 (2020)
  8. Bhamore, J. R., Jha, S., Park, T. J., Kailasa, S. K., “Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells”, Journal of Photochemistry and Photobiology B: Biology, 191 (2019) 150-155.
  9. Ramanarayanan, R., Swaminathan, S. “Synthesis and characterisation of green luminescent carbon dots from guava leaf extract”, Materials Today: Proceedings, 33 (2020) 2223-2227.
  10. Diao, H., Li, T., Zhang, R., Kang, Y., Liu, W., Cui, Y., Wei, S., Wang, N., Li, L., Wang, H., Niu, W., “Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 200 (2018) 226-234.
  11. Zhang, X., Wang, H., Ma, C., Niu, N., Chen, Z., Liu, S., Li, J., Li, S., “Seeking values from biomass materials: Preparation of coffee bean shell-derived fluorescent carbon dots via molecular aggregation for antioxidation and bioimaging applications”, Materials Chemistry Frontiers, 2(7) (2018) 1269-1275.
  12. Costa, R. S., de Castro, M. O., da Silva, G. H., Delite, F. D. S., Strauss, M., Ferreira, O. P., Martinez, D. S. T., Viana, B. C., “Carbon-dots from Babassu coconut (Orbignya speciosa) biomass: Synthesis, characterization, and toxicity to Daphnia magna”, Carbon Trends, (2021)
  13. Liu, L., Quan, M., Sun, H., Yang, Z. Q., Xiao, L., Gong, X., Hu, Q. “A highly sensitive fluorescence probe for methyl parathion detection in vegetable and fruit samples based on N and S co-doped carbon dots” Journal of Food Composition and Analysis, (2021)
  14. Paul, A., Kurian, M., “Facile synthesis of nitrogen doped carbon dots from waste biomass: Potential optical and biomedical applications”, Cleaner Engineering and Technology, 3 (2021)
  15. Tang, C., Long, R., Tong, X., Guo, Y., Tong, C., Shi, S., “Dual-emission biomass carbon dots for near-infrared ratiometric fluorescence determination and imaging of ascorbic acid”, Microchemical Journal, 164 (2021)
  16. Jayan, S. S., Jayan, J. S., Sneha, B., Abha, K., “Facile synthesis of carbon dots using tender coconut water for the fluorescence detection of heavy metal ions”, Materials Today: Proceedings, 43 (2021) 3821-3825.
  17. Dahunsi, S. O., Adesulu-Dahunsi, A. T., Izebere, J. O., “Cleaner energy through liquefaction of Cocoa (Theobroma cacao) pod husk: Pretreatment and process optimization”, Journal of Cleaner Production, 226 (2019) 578-588.
  18. Sanyang, M. L., Sapuan, S. M., Haron, M., “Effect of cocoa pod husk filler loading on tensile properties of cocoa pod husk/polylactic acid green biocomposite films”, AIP Conference Proceedings, 1891(1) (2017)
  19. Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., Warren, G., Chatzifragkou, A., Mason, S. M., Gomez, L., Faas, L., “Valorisation strategies for cocoa pod husk and its fractions”, Current Opinion in Green and Sustainable Chemistry, 14 (2018) 80-88.
  20. Putra, S. S. S., Jimat, D. N., Fazli, W. M., Sulaiman, S., Jamal, P., Nor, Y. A., “Surface functionalisation of microfibrillated cellulose (MFC) of cocoa pod husk with Ƴ-Methacryloxypropyltrimethoxysilane (MPS)”, Materials Today: Proceedings, 5(10) (2018) 22000-22009.
  21. Campos-Vega, R., Nieto-Figueroa, K. H., Oomah, B. D., “Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds”, Trends in Food Science & Technology, 81 (2018) 172-184.
  22. Dahunsi, S. O., Adesulu-Dahunsi, A. T., Izebere, J. O., “Cleaner energy through liquefaction of Cocoa (Theobroma cacao) pod husk: Pretreatment and process optimization”, Journal of Cleaner Production, 226 (2019) 578-588.
  23. Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., Warren, G., Chatzifragkou, A., Mason, S. M., Gomez, L., Faas, L., “Valorisation strategies for cocoa pod husk and its fractions”, Current Opinion in Green and Sustainable Chemistry, 14 (2018) 80-88.
  24. Khanahmadi, S., Yusof, F., Ong, H. C., Amid, A., Shah, H., “Cocoa pod husk: A new source of CLEA-lipase for preparation of low-cost biodiesel: An optimized process”, Journal of biotechnology, 231 (2016) 95-105.
  25. Adi-Dako, O., Ofori-Kwakye, K., Manso, S. F., Boakye-Gyasi, M. E., Sasu, C., Pobee, M., “Physicochemical and antimicrobial properties of cocoa pod husk pectin intended as a versatile pharmaceutical excipient and nutraceutical”, Journal of pharmaceutics, 2016.
  26. Ghosal, K., Ghosh, A., “Carbon dots: The next generation platform for biomedical applications. Materials Science and Engineering C, 96 (2019) 887-903.
  27. Supchocksoonthorn, P., Thongsai, N., Moonmuang, H., Kladsomboon, S., Jaiyong, P., Paoprasert, P., “Label-free carbon dots from black sesame seeds for real-time detection of ammonia vapor via optical electronic nose and density functional theory calculation”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 575 (2019) 118-128.
  28. Crista, D., Esteves da Silva, J. C., & Pinto da Silva, L., “Evaluation of different bottom-up routes for the fabrication of carbon dots”, Nanomaterials, 10(7) (2020) 1316.
  29. Bruno, F., Sciortino, A., Buscarino, G., Soriano, M. L., Ríos, Á., Cannas, M., Gelardi, F., Messina, F. Agnello, S., “A Comparative Study of Top-Down and Bottom-Up Carbon Nanodots and Their Interaction with Mercury Ions”, Nanomaterials, 11(5) (2021)
  30. Sharma, A., Das, J., “Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine”, Journal of Nanobiotechnology, 17(1) (2019) 1-24.
  31. Moradi, S., Sadrjavadi, K., Farhadian, N., Hosseinzadeh, L., Shahlaei, M., “Easy synthesis, characterization and cell cytotoxicity of green nano carbon dots using hydrothermal carbonization of Gum Tragacanth and chitosan biopolymers for bioimaging”, Journal of Molecular Liquids, 259 (2018) 284-290.
  32. Wang, H., Xie, Y., Na, X., Bi, J., Liu, S., Zhang, L., Tan, M., “Fluorescent carbon dots in baked lamb: formation, cytotoxicity and scavenging capability to free radicals”, Food chemistry, 286 (2019) 405-412.
  33. Sendão, R., de Yuso, M. D. V. M., Algarra, M., da Silva, J. C. E., da Silva, L. P., “Comparative life cycle assessment of bottom-up synthesis routes for carbon dots derived from citric acid and urea”, Journal of Cleaner Production, 254 (2020)
  34. Gusain, D., Renuka, N., Guldhe, A., Bux, F., “Use of microalgal lipids and carbohydrates for the synthesis of carbon dots via hydrothermal microwave treatment”, Inorganic Chemistry Communications, 134 (2021) 109021.
  35. Wu, Y., Li, Y., Pan, X., Hu, C., Zhuang, J., Zhang, X., Lei, B., Liu, Y., “Hemicellulose-triggered high-yield synthesis of carbon dots from biomass”, New Journal of Chemistry, 45(12) (2021) 5484-5490.
  36. Naidu, J. R., Ismail, R., Sasidharan, S., “Acute oral toxicity and brine shrimp lethality of methanol extract of Mentha Spicata L (Lamiaceae)”, Tropical Journal of Pharmaceutical Research, 13(1) (2014) 101-107.
  37. Raveendran, P. V., Aswathi, B. S., Renuka, N. K., “Arrowroot derived carbon dots: Green synthesis and application as an efficient optical probe for fluoride ions”, Materials Today: Proceedings, (2021).
  38. Dhandapani, E., Duraisamy, N., Periasamy, P., “Highly green fluorescent carbon quantum dots synthesis via hydrothermal method from fish scale”, Materials Today: Proceedings, (2021)
  39. Ganesan, S., Kalimuthu, R., Kanagaraj, T., Kulandaivelu, R., Nagappan, R., Pragasan, L. A., Ponnusamy, V. K., “Microwave-assisted green synthesis of multi-functional carbon quantum dots as efficient fluorescence sensor for ultra-trace level monitoring of ammonia in environmental water”, Environmental research, (2021)
  40. Siddique, A. B., Pramanic, A. K., Chatterjee, S. Ray, M., “Amorphous carbon dots and their remarkable ability to detect 2,4,6-Trinitrophenol”, Scientific Reports, 8(1) (2018) 1-10.
  41. Atchudan, R., Gangadaran, P., Edison, T. N. J. I., Perumal, S., Sundramoorthy, A. K., Vinodh, R., Rajendran, R. L., Ahn, B. C., Lee, Y. R., “Betel leaf derived multicolor emitting carbon dots as a fluorescent probe for imaging mouse normal fibroblast and human thyroid cancer cells”, Physica E: Low-dimensional Systems and Nanostructures, 136 (2022)
  42. Tejwan, N., Saha, S. K., Das, J., “Multifaceted applications of green carbon dots synthesized from renewable sources”, Advances in colloid and interface science, 275 (2020)
  43. Ding, C., Deng, Z., Chen, J., Jin, Y., “One-step microwave synthesis of N, S co-doped carbon dots from 1,6-hexanediamine dihydrochloride for cell imaging and ion detection”, Colloids and Surfaces B: Biointerfaces, 189 (2020)
  44. Jumardin, J., Maddu, A., Santoso, K., Isnaeni, I., “Synthesis of Carbon Dots (CDS) and Determination of Optical Gap Energy with Tauc Plot Method”, Jambura Physics Journal, 3(2) (2021) 73-86.
  45. Sekar, A., Yadav, R., “Green Fabrication of Zinc Oxide Supported Carbon Dots for Visible Light-Responsive Photocatalytic Decolourization of Malachite Green Dye: Optimization and Kinetic Studies”, Optik, (2021)
  46. Yu, J., Liu, C., Yuan, K., Lu, Z., Cheng, Y., Li, L., Zhang, X., Jin, P., Meng F., Liu, H., “Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions”, Nanomaterials, 8(4) (2018)
  47. Sutanto, H., Alkian, I., Romanda, N., Lewa, I. W. L., Marhaendrajaya, I., Triadyaksa, P., “High green-emission carbon dots and its optical properties: Microwave power effect”, AIP Advances, 10(5) (2020)
  48. Abd Rani, U., Ng, L. Y., Ng, C. Y., Mahmoudi, E., “A review of carbon quantum dots and their applications in wastewater treatment”, Advances in colloid and interface science, 278 (2020)
  49. Man, Y., Li, Z., Kong, W.L., Li, W., Dong, W., Wang, Y., Xie, F., Zhao, D., Qu, Q., Zou, W. S., “Starch fermentation wastewater as a precursor to prepare S, N-doped carbon dots for selective Fe (III) detection and carbon microspheres for solution decolorization”, Microchemical Journal, 159 (2020)
  50. Jimat, D. N., Talha, N. S., Husin, N. F. C., Azmi, A. S., Raus, R. A., “Screening cellulolytic fungi isolated from Malaysia cocoa pod husk and its culture conditions for cellulase production”, Trop. Resour. Sustain. Sci, 3 (2015) 185-190.
  51. Basak, P., Paul, S. and Majumder, R., “Invitro cytotoxic study of aloe vera whole leaf extract on PBMC and breast cancer cell line”, International Conference for Convergence in Technology, (2017) 124-127
  52. Rahmani, A. H., Aldebasi, Y. H., Srikar, S., Khan, A. A., Aly, S. M., “Aloe vera: Potential candidate in health management via modulation of biological activities”, Pharmacognosy Reviews, 9(18) (2015)
  53. Mu’nisa, A., Pagarra, H., Maulana, Z., “Active compounds extraction of cocoa pod husk (Thebroma cacao L.) and potential as fungicides”, Journal of Physics: Conference series, 1028 (2018)