A Review of Promising Selected Agents Combined with Carbon Dots for Biomedical Applications

Document Type : Research Paper


1 Department of Chemistry, Pakokku University, Myaing Road, Pakokku 90401, Myanmar

2 Department of Chemistry, Airlangga University, Kampus C Mulyorejo, Surabaya 60115, Indonesia

3 Walchand Center for Research in Nanotechnology and Nanotechnology, WCAS Solapur University, Solapur, Maharashtra, India

4 Supramodification Nano-micro–Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia


   Carbon dots (CDs) are a new type of QD that has attracted a great deal of attention in recent years because of their multiple fascinating characteristics and advantages resulting from physical and optical properties, fluorescence, water solubility, low toxicity, facile synthesis, favorable quantum yield, long thermal storage resistance and photostability. CDs offer promising applications in therapeutics, diagnostics, optoelectronic devices etc. In this review conjugation and com­posite formation at nanoscale level between CDs and other materials for altering their properties for the desired therapeutic uses are discussed. CD in order to be suitable for its application as a therapeutic agent it needs desired particle size, size distribution – as they affect the in-vivo distribu­tion, stability, drug loading and drug release ability, uptake by cells, biological fate, toxicity, and targeting ability to a range of cellular and intracellular targets, easy mobility and capacity to cross the blood-brain bar­rier etc. Conjugating agents of biogenic origin, organic material, synthetic drugs and antibiotics as well as inorganic heteroatoms are discussed.


Main Subjects

  1. Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., Lin, Y., Harruff, B. A., Veca, L. M., Murray, D., Xie, S. Y., “Carbon dots for multiphoton bioimaging”, Am. Chem. Soc., 129 (2007) 11318-11319.
  2. Yang, S. T., Wang, X., Wang, H., Lu, F., Luo, P.G., Cao, L., Meziani, M. J., Liu, J. H., Liu, Y., Chen, M., Huang, Y., “Carbon dots as nontoxic and high-performance fluorescence imaging agents”, Phys. Chem. C, 113 (2009) 18110-18114.
  3. Georgakilas, V., Perman, J. A., Tucek, J., Zboril, R., “Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures”, Rev., 115 (2015) 4744-4822.
  4. Ray, S. C., Saha, A., Jana, N. R., Sarkar, R., “Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application”, Phys. Chem. C, 113 (2009) 18546-18551.
  5. Baker, S. N., Baker, G. A., “Luminescent carbon nanodots: emergent nanolights”, Chem. Int. Ed., 49 (2010) 6726-6744.
  6. Zhang, Z.P., Zhang, J., Chen, N., Qu, L. T., “Tailored graphene systems for unconventional applications in energy conversion and storage devices, energy”, Sci., 5 (2012) 8869-8890.
  7. Tuerhong, M., Yang, X. U., Xue-Bo, Y. I. N., “Review on carbon dots and their applications”, Chinese J. Anal. Chem.,45 (2017) 139-150.
  8. Ghosal, K., Ghosh, A., “Carbon dots: The next generation platform for biomedical applications” Sci. Eng. C, 96 (2019) 887-903.
  9. Meng, W., Bai, X., Wang, B., Liu, Z., Lu, S., Yang, B., “Biomass‐Derived Carbon Dots and Their Applications”, Energy Mater., 2 (2019) 172-192.
  10. Yao, B., Huang, H., Liu, Y., Kang, Z., “Carbon dots: a small conundrum”, Trends in Chemistry, 1 (2019) 235-246.
  11. Sagbas, S., Sahiner, N., “Carbon dots: preparation, properties, and application”, In Nanocarbon and its Composites. Elsevier, 3 (2019) 651-676.
  12. Li, Q., Zhang, S., Dai, L., Li, L. S., “Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction”, Am. Chem. Soc., 134 (2012) 18932-18935.
  13. Baker, S. N., Baker, G. A., “Luminescent carbon nanodots: emergent nanolights”, Int. Ed., 49 (2010) 6726-6744.
  14. Hou, Q., Xue, C. Li., N., Wang, H., Chang, Q., Liu, H., Yang, J., Hu, S., “Self-assembly carbon dots for powerful solar water evaporation”, Carbon, 149 (2019) 556-563.
  15. Bhunia, S. K., Dolai, S., Sun, H., Jelinek, R., “On/off/on” hydrogen-peroxide sensor with hemoglobin-functionalized carbon dots”, Actuators B Chem., 270 (2018) 223-230.
  16. LeCroy, G. E., Yang, S. T., Yang, F., Liu, Y., Fernando, K. S., Bunker, C. E., Hu, Y., Luo, P. G., Sun, Y. P., “Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion”, Chem. Rev., 320 (2016) 66-81.
  17. Wu, Y. F., Wu, H. C., Kuan, C. H., Lin, C. J., Wang, L. W., Chang, C. W., Wang, T. W., “Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy”, Rep., 6 (2016) 21170.
  18. Sharma, S. K., Micic, M., Li, S., Hoar, B., Paudyal, S., Zahran, E. M., Leblanc, R. M., “Conjugation of carbon dots with β-galactosidase enzyme: surface chemistry and use in biosensing” Molecules, 24 (2019) 3275.
  19. Bottini, M., Balasubramanian, C., Dawson, M. I., Bergamaschi, A., Bellucci, S., Mustelin, T., “Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes”, Phys. Chem. B, 110 (2006) 831-836.
  20. Sun, Y.P., Zhou, B., Lin, Y., Wang, W., Fernando, K.S., Pathak, P., Meziani, M.J., Harruff, B. A., Wang, X., Wang, H. Luo, P. G., “Quantum-sized carbon dots for bright and colorful photoluminescence”, Am. Chem. Soc., 128 (2006) 7756-7757.
  21. Fahmi, M. Z., Chen, J. K., Huang, C. C., Ling, Y. C., Chang, J. Y., “Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery”, Mater. Chem. B, 3 (2015) 5532-5543.
  22. Liu, M. L., Chen, B. B., Li, C. M., Huang, C. Z., “Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications”, Green chem., 21 (2019) 449-471.
  23. Sarkar, S., Das, K., Ghosh, M., Das, P. K., “Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe”, RSC Adv., 5 (2015) 65913-65921.
  24. Bera, M., Maji, S., Paul, A., Sahoo, B. K., Maiti, T. K., Singh, N. P., “Quinoline H2S donor decorated fluorescent carbon dots: visible light responsive H2S nanocarriers”,  of Mater. Chem. B, 8 (2020) 1026-1032.
  25. Boakye-Yiadom, K. O., Kesse, S., Opoku-Damoah, Y., Filli, M. S., Aquib, M., Joelle, M. M. B., Farooq, M. A., Mavlyanova, R., Raza, F., Bavi, R., “Carbon dots: Applications in bioimaging and theranostics”,  J. Pharm., 564 (2019) 308-317.
  26. Singh, J., Kaur, S., Lee, J., Mehta, A., Kumar, S., Kim, K. H., Basu, S., Rawat, M., “Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions”  Total Environ., 720 (2020) 137604.
  27. Zhong, X., Li, X., Zhuo, Y., Chai, Y., Yuan, R., “Synthesizing anode electrochemiluminescent self-catalyzed carbon dots-based nanocomposites and its application in sensitive ECL biosensor for microRNA detection”, Sens. Actuators B Chem., 305 (2020) 127490.
  28. Cui, L., Wu, J., Ju, H., “Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials”, , 63 (2015) 276-286.
  29. Ding, H., Yu, S. B., Wei, J. S., Xiong, H. M., “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism” ACS nano, 10 (2015) 484-491.
  30. Deng, J., Li, M., Wang, Y., “Biomass-derived carbon: synthesis and applications in energy storage and conversion” Green Chem., 18 (2016) 4824-4854.
  31. Peng, Z., Han, X., Li, S., Al-Youbi, A. O., Bashammakh, A. S., El-Shahawi, M. S., Leblanc, R. M., “Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine”,  Chem. Rev., 343 (2017) 256-277.
  32. Namdari, P., Negahdari, B., Eatemadi, A., “Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review”  Pharmacother., 87 (2017) 209-222.
  33. Shen, L. M., Liu, J., “New development in carbon quantum dots technical applications” Talanta,156 (2016) 245-256.
  34. Lu, K. Q., Quan, Q., Zhang, N., Xu, Y. J., “Multifarious roles of carbon quantum dots in heterogeneous photocatalysis”  Energy Chem., 25 (2016) 927-935.
  35. Ghosal, K., Ghosh, A., “Carbon dots: The next generation platform for biomedical applications”  Sci. Eng. C, 96 (2019) 887-903.
  36. Kwee, Y., Kristanti, A. N., Siimon, K., Aminah, N. S., Fahmi, M. Z., “Carbon nanodots derived from natural products”,  Afr. J. Chem., 75 (2021) 40-63.
  37. Pillar-Little, T. J., Wanninayake, N., Nease, L., Heidary, D. K., Glazer, E. C., Kim, D. Y., “Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: Detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots”, Carbon,140 (2018) 616-623.
  38. Wang, X., Feng, Y., Dong, P., Huang, J., “A Mini Review on Carbon Quantum Dots: Preparation, Properties and Electrocatalytic Application”,  Chem., 7 (2019) 671.
  39. Kwee, Y., Kristanti, A. N., Aminah, N. S., Fahmi, M. Z., “Design of Catechin-based Carbon Nanodots as Facile Staining Agents of Tumor Cells”,  J. Chem., 20 (2020) 1332-1346.
  40. Peng, H., Travas-Sejdic, J., “Simple aqueous solution route to luminescent carbogenic dots from carbohydrates”  Mater., 21 (2009) 5563-5565.
  41. Ghosal, K., Ghosh, S., Ghosh, D., Sarkar, K., “Natural polysaccharide derived carbon dot based in situ facile green synthesis of silver nanoparticles: Synergistic effect on breast cancer”,  J. Biol. Macromol., 162 (2020) 1605-1615.
  42. Ma, Z., Ming, H., Huang, H., Liu, Y., Kang, Z., “One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability”, New J. Chem., 36 (2012) 861-864.
  43. Chowdhury, D., Gogoi, N., Majumdar, G., “Fluorescent carbon dots obtained from chitosan gel”, RSC Adv., 2 (2012) 12156-12159.
  44. da Silva Souza, D. R., Caminhas, L. D., de Mesquita, J. P., Pereira, F. V., “Luminescent carbon dots obtained from cellulose”,  Chem. Phys., 203 (2018)148-155.
  45. Rai, S., Singh, B. K., Bhartiya, P., Singh, A., Kumar, H., Dutta, P., Mehrotra, G., “Lignin derived reduced fluorescence carbon dots with theranostic approaches: nano-drug-carrier and bioimaging”, Lumin., 190 (2017) 492-503.
  46. Ludmerczki, R., Mura, S., Carbonaro, C. M., Mandity, I. M., Carraro, M., Senes, N., Garroni, S., Granozzi, G., Calvillo, L., Marras, S., “Carbon dots from citric acid and its intermediates formed by thermal decomposition”,  Eur. J., 25 (2019) 11963-11974.
  47. Jiao, X. Y., Li, L. S., Qin, S., Zhang, Y., Huang, K., Xu, L., “The synthesis of fluorescent carbon dots from mango peel and their multiple applications”, Colloids Surf., 577 (2019) 306-314.
  48. Li, Z., Zhang, Y., Niu, Q., Mou, M., Wu, Y., Liu, X., Yan, Z., Liao, S., “A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg2+ in water”,  Lum.,187 (2017) 274-280.
  49. Atchudan, R., Edison, T. N. J. I., Chakradhar, D., Perumal, S., Shim, J. J., Lee, Y. R., “Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications”,  Actuators B Chem., 246 (2017) 497-509.
  50. Ahn, J., Song, Y., Kwon, J. E., Lee, S. H., Park, K. S., Kim, S., Woo, J., Kim, H., “Food waste-driven N-doped carbon dots: Applications for Fe3+ sensing and cell imaging”,  Sci. Eng. C, 102 (2019)106-112.
  51. Atchudan, R., Edison, T. N. J. I., Perumal, S., Muthuchamy, N., Lee, Y. R., “Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications”, Fuel, 275 (2020) 117821.
  52. Mewada, A., Pandey, S., Shinde, S., Mishra, N., Oza, G., Thakur, M., Sharon, M. Sharon, M., “Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel”,  Sci. Eng. C, 33 (2013) 2914-2917.
  53. Oza, G., Ravichandran, M., Merupo, V. I., Shinde, S., Mewada, A., Ramirez, J. T., Velumani, S., Sharon, M., Sharon, M., “Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging”,  Rep., 6 (2016) 1-9.
  54. Phadke, C., Mewada, A., Dharmatti, R., Thakur, M., Pandey, S., Sharon, M., “Biogenic synthesis of fluorescent carbon dots at ambient temperature using Azadirachta indica (Neem) gum”,  Fluoresc., 25 (2015) 1103-1107.
  55. Sharon, M., Mewada, A., “Advances in Nanotechnology & Applications: Carbon Dots as Theranostic Agents”, Published by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA (2018).
  56. Peng, J., Gao, W., Gupta, B.K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L. B., Zhan, X., Gao, G., Vithayathil, S. A., “Graphene quantum dots derived from carbon fibers”, Nano Lett., 12 (2012) 844-849.
  57. Kim, S., Hwang, S. W., Kim, M. K., Shin, D. Y., Shin, D. H., Kim, C. O., Yang, S. B., Park, J. H., Hwang, E., Choi, S. H., Ko, G., “Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape”, ACS nano, 6 (2012) 8203-8208.
  58. Choi, Y., Kang, B., Lee, J., Kim, S., Kim, G. T., Kang, H., Lee, B. R., Kim, H., Shim, S. H., Lee, G., “Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots”,  Mater., 28 (2016) 6840-6847.
  59. Wibrianto, A., Khairunisa, S. Q., Sakti, S. C., Ni'mah, Y. L., Purwanto, B., Fahmi, M. Z., “Comparison of the effects of synthesis methods of B, N, S, and P-doped carbon dots with high photoluminescence properties on HeLa tumor cells”, RSC Adv., 11 (2020) 1098-1108.
  60. Fahmi, M. Z., Haris, A., Permana, A. J., Wibowo, D. L. N., Purwanto, B., Nikmah, Y. L., Idris, A., “Bamboo leaf-based carbon dots for efficient tumor imaging and therapy”, RSC Adv.,8 (2018) 38376-38383.
  61. Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C., Lin, H., “Red, green, and blue luminescence by carbon dots: full‐color emission tuning and multicolor cellular imaging”,  Chemie, 127 (2015) 5450-5453.
  62. Li, H., Zhang, Y., Wang, L., Tian, J., Sun, X., “Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform”,  Comm., 47 (2011) 961-963.
  63. Yang, Z. C., Wang, M., Yong, A. M., Wong, S. Y., Zhang, X. H., Tan, H., Chang, A. Y., Li, X., Wang, J., “Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate”,  Comm., 47 (2011) 11615-11617.
  64. Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., Teng, K. S., Luk, C. M., Zeng, S., Hao, J., Lau, S. P., “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots”, ACS nano, 6 (2012) 5102-5110.
  65. Puvvada, N., Kumar, B. P., Konar, S., Kalita, H., Mandal, M., Pathak, A., “Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications”  Technol. Adv. Mater., 13 (2012) 1468-6996.
  66. Tian, X. T., Yin, X. B., “Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence”, Small, (2019) 1901803.
  67. Ding, H., Li, X. H., Chen, X. B., Wei, J. S., Li, X. B., Xiong, H. M., “Surface states of carbon dots and their influences on luminescence”,  Appl. Phys., 127 (2020) 231101.
  68. Peng, Z., Ji, C., Zhou, Y., Zhao, T., Leblanc, R. M., “Polyethylene glycol (PEG) derived carbon dots: Preparation and applications”,  Mater., 20 (2020) 100677.
  69. Zuo, P., Lu, X., Sun, Z., Guo, Y., He, H., “A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots”, , Acta, 183 (2016) 519-542.
  70. Yang, L., Wang, Z., Wang, J., Jiang, W., Jiang, X., Bai, Z., He, Y., Jiang, J., Wang, D., Yang, L., “Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy”, Nanoscale,8 (2016) 6801-6809.
  71. Kong, T., Hao, L., Wei, Y., Cai, X., Zhu, B., “Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy”, Cell Prolif.,51 (2018) e12488.
  72. Hailing, Y., Xiufang, L., Lili, W., Baoqiang, L., Kaichen, H., Yongquan, H., Qianqian, Z., Chaoming, M., Xiaoshuai, R., Rui, Z., “Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy”, Nanoscale,12 (2020) 17222-17237.
  73. Zhang, M., Fang, Z., Zhao, X., Niu, Y., Lou, J., Zhao, L., Wu, Y., Zou, S., Du, F., Shao, Q., “Hyaluronic acid functionalized nitrogen-doped carbon quantum dots for targeted specific bioimaging”, RSC Adv., 6 (2016) 104979-104984.
  74. Zhang, J., Zhao, X., Xian, M., Dong, C., Shuang, S., “Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells”, Talanta,183 (2018) 39-47.
  75. Kroll, R. A., Pagel, M. A., Muldoon, L. L., Muldoon, L. L., Roman-Goldstein, S., Fiamengo, S. A., Neuwelt, E. A., Neuwelt, E. A., Neuwelt, E. A., “Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers”,  Neurosurg.,43 (1998) 879-886.
  76. Redhead, H. M., Davis, S. S., Illum, L., “Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation”,  Control Release, 70 (2001) 353-363.
  77. Chowdhury, D., Gogoi, N., Majumdar, G., “Fluorescent carbon dots obtained from chitosan gel”, RSC Adv., 2 (2012) 12156–12159.
  78. Nasrin, A., Hassan, M., Mann, G., Gomes, V. G., “Conjugated ternary doped carbon dots from vitamin B derivative: Multispectral nanoprobes for targeted melanoma bioimaging and photosensitization”,  Lumin., 217 (2020) 116811.
  79. Wei, L., Ma, Y., Shi, X., Wang, Y., Su, X., Yu, C., Xiang, S., Xiao, L., Chen, B., “Living cell intracellular temperature imaging with biocompatible dye-conjugated carbon dots”,  Mater. Chem. B, 5(2017) 3383-3390.
  80. Lin, F., Pei, D., He, W., Huang, Z., Huang, Y., Guo, X., “Electron transfer quenching by nitroxide radicals of the fluorescence of carbon dots”,  Mater. Chem., 22 (2012) 11801-11807.
  81. Yan, Y., Zhai, D., Liu, Y., Gong, J., Chen, J., Zan, P., Zeng, Z., Li, S., Huang, W., Chen, P., “Van der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting”, ACS nano, 14 (2020) 1185-1195.
  82. Lang, Y., Geng, L., Lan, L., Sun, X., Zhang, X., “Interaction and energy transfer between carbon dots and serum human transferrin”,  Lett.,51 (2018) 123-129.
  83. Lagerholm, B. C., Wang, M., Ernst, L. A., Ly, D. H., Liu, H., Bruchez, M. P., Waggoner, A. S., “Multicolor coding of cells with cationic peptide coated quantum dots”, Nano Letters, 4 (2004) 2019-2022.
  84. Santra, S., Yang, H., Stanley, J. T., Holloway, P. H., Moudgil, B. M., Walter, G., Mericle, R. A., “Rapid and effective labeling of brain tissue using TAT-conjugated CdS∶ Mn/ZnS quantum dots”,  Comm., 25 (2005) 3144-3146.
  85. Stroh, M., Zimmer, J. P., Duda, D. G., Levchenko, T. S., Cohen, K. S., Brown, E. B., Scadden, D. T., Torchilin, V. P., Bawendi, M. G., Fukumura, D., Jain, R. K., “Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo”, Med., 11 (2005) 678-682.
  86. Kováčová, M., Špitalská, E., Markovic, Z., Špitálský, Z., “Carbon Quantum Dots As Antibacterial Photosensitizers and Their Polymer Nanocomposite Applications”,  Part. Syst. Charact., 37 (2020) 1900348.
  87. Lin, F., Bao, Y. W., Wu, F. G., “Carbon dots for sensing and killing microorganisms”, . C—J. Res., Carbon Research, 5 (2019) 33.
  88. Mazumdar, A., Haddad, Y., Milosavljevic, V., Michalkova, H., Guran, R., Bhowmick, S., Moulick, A., “Peptide-carbon quantum dots conjugate, derived from human retinoic acid receptor responder protein 2, against antibiotic-resistant gram positive and gram negative pathogenic bacteria”, Nanomaterials,10 (2020) 325.
  89. Xia, Y., Padmanabhan, P., Gulyás, B., Murukeshan, V. M., “Peptides functionalized carbon dots for in Avitro fluorescent imaging of amyloid fibrils”, In 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR); IEEE, (2017) 1-3.
  90. Gao, Y., Pramanik, A., Patibandla, S., Gates, K., Hill, G., Ignatius, A., Ray, P. C., “Development of Human Host Defense Antimicrobial Peptide-Conjugated Biochar Nanocomposites for Combating Broad-Spectrum Superbugs”, ACS Appl. Bio Mater., 3 (2020) 7696-7705.
  91. Ghosh, S., Ghosal, K., Mohammad, S. A., Sarkar, K., “Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy”,  Eng. J., 373 (2019) 468-484.
  92. Zheng, X. T., Than, A., Ananthanaraya, A., Kim, D. H., Chen, P., “Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes”, ACS nano, 7 (7) (2013) 6278-6286.
  93. Duan, Q., Shi, J., Zhou, L., Zhang, B., Wang, X., Sang, S., “pH-responsive and sustained release drug delivery system of BSA coated CDs-DOX”,  Mol. Struct., 1248 (2022) 131358.
  94. Sahu, V., Khan, F., “Synthesis of bovine serum albumin capped boron-doped carbon dots for sensitive and selective detection of Pb (II) ion” Heliyon, 6 (2020) e03957.
  95. Milosavljevic, V., Nguyen, H.V., Michalek, P., Moulick, A., Kopel, P., Kizek, R., Adam, V., “Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization”,  Pap., 69 (2015) 192-201.
  96. Xu, B., Zhao, C., Wei, W., Ren, J., Miyoshi, D., Sugimoto, N. and Qu, X., “Aptamer carbon nanodot sandwich used for fluorescent detection of protein”, Analyst,137 (2012) 5483-5486.
  97. Singh, S., Mishra, A., Kumari, R., Sinha, K. K., Singh, M. K., Das, P., “Carbon dots assisted formation of DNA hydrogel for sustained release of drug”, Carbon,114 (2017) 169-176.
  98. Wang, L., Wang, X., Bhirde, A., Cao, J., Zeng, Y., Huang, X., Sun, Y., Liu, G., Chen, X., “Carbon dots based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA”,  Healthc. Mater., 3 (2014) 1203.
  99. Liu, H., Wang, Q., Shen, G., Zhang, C., Li, C., Ji, W., Wang, C., Cui, D., “A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy”, Nanoscale Res. , 9 (2014)1-11.
  100. Loh, S. M., Huang, Y. H., Lin, K. M., Su, W. S., Wu, B. R., Leung, T. C., “Quantum confinement effect in armchair graphene nanoribbons: Effect of strain on band gap modulation studied using first-principles calculations”,  Rev. B, 90 (2014) 035450.
  101. Fahmi, M. Z., Chang, J. Y., “Tailoring folic acid and methotrexate-attributed quantum dots for integrated cancer cell imaging and therapy”, In AIP Conference Proceedings; AIP Publishing LLC (2016) 080001.
  102. Assaraf, Y. G., Leamon, C. P., Reddy, J. A., “The folate receptor as a rational therapeutic target for personalized cancer treatment”, Drug Resist. Updat.,17 (2014) 89-95.
  103. Díaz-García, D., Montalbán-Hernández, K., Mena-Palomo, I., Achimas-Cadariu, P., Rodríguez-Diéguez, A., López-Collazo, E., Prashar, S., Ovejero Paredes, K., Filice, M., Fischer-Fodor, E., “Role of Folic Acid in the Therapeutic Action of Nanostructured Porous Silica Functionalized with Organotin (IV) Compounds Against Different Cancer Cell Lines:, Pharmaceutics, 12 (2020) 512.
  104. Fernández, M., Javaid, F., Chudasama, V., “Advances in targeting the folate receptor in the treatment/imaging of cancers”,  Sci.,9(2018) 790-810.
  105. Yi, Y. S., “Folate receptor-targeted diagnostics and therapeutics for inflammatory diseases”, Immune Netw., 16 (2016) 337-343.
  106. Wibowo, A. S., Singh, M., Reeder, K. M., Carter, J. J., Kovach, A. R., Meng, W., Ratnam, M., Zhang, F., Dann, C. E., “Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition”, Proc. Natl. Acad. Sci., 110 (2013) 15180-15188.
  107. Hartmann, L. C., Keeney, G. L., Lingle, W. L., Christianson, T. J., Varghese, B., Hillman, D., Oberg, A. L., Low, P. S., “Folate receptor overexpression is associated with poor outcome in breast cancer”,  J. cancer, 121 (2007) 938-942.
  108. Song, Y., Shi, W., Chen, W., Li, X., Ma, H., “Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells”,  Mater. Chem.,22 (2012) 12568-12573.
  109. Zhao, X., Zhang, J., Shi, L., Xian, M., Dong, C., Shuang, S., “Folic acid-conjugated carbon dots as green fluorescent probes based on cellular targeting imaging for recognizing cancer cells”, RSC Adv.,7 (2017) 42159-42167.
  110. Song, Y., Chen, Y., Feng, L., Ren, J., Qu, X., “Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity”, Chem. Comm., 47 (2011) 4436-4438.
  111. Lee, S., Lee, K., “pH-sensitive folic acid conjugated alginate nanoparticle for induction of cancer-specific fluorescence imaging”, Pharmaceutics,12(2020) 537.
  112. Duman, F. D., Erkisa, M., Khodadust, R., Ari, F., Ulukaya, E., Acar, H. Y., “Folic acid-conjugated cationic Ag2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells”, Nanomedicine,12 (2017) 2319-2333.
  113. Feng, S., Pan, J., Li, C., Zheng, Y., “Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells”, Nanotechnology,31 (2020) 135701.
  114. Campos, B. B., Oliva, M. M., Contreras-Cáceres, R., Rodriguez-Castellón, E., Jiménez-Jiménez, J., da Silva, J. C. E., Algarra, M., “Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt (IV) detection”, J. Colloid and Interface Sci.,465 (2016) 165-173.
  115. Yu, L., Zhou, L., Ding, M., Li, J., Tan, H., Fu, Q., He, X., “Synthesis and characterization of novel biodegradable folate conjugated polyurethanes”, J. Colloid and Interface Sci., 358 (2011) 376-383.
  116. Suriamoorthy, P., Zhang, X., Hao, G., Joly, A. G., Singh, S., Hossu, M., Sun, X., Chen, W., “Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting”, Cancer nanotechnol.,1 (2010) 19-28.
  117. Chen, W., Hu, C., Yang, Y., Cui, J., Liu, Y., “Rapid synthesis of carbon dots by hydrothermal treatment of lignin”, , 9 (2016) 184.
  118. Pawar, S., Togiti, U.K., Bhattacharya, A., Nag, A., “Functionalized Chitosan–Carbon Dots: A Fluorescent Probe for Detecting Trace Amount of Water in Organic Solvents”, ACS omega,4 (2019) 11301-11311.
  119. Lee, S. Y., Kang, M. S., Jeong, W. Y., Han, D. W., Kim, K. S., “Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy”, Cancers,12 (2020) 940.
  120. Krishna, A. S., Radhakumary, C., Priya, S. S., Ramesan, R. M., Sreenivasan, K., “Methotrexate anchored carbon dots as theranostic probes: digitonin conjugation enhances cellular uptake and cytotoxicity”, RSC Adv.,6 (2016) 56313-56318.
  121. Park, S., Park, H., Jeong, S., Yi, B. G., Park, K., Key, J., “Hyaluronic acid-conjugated mesoporous silica nanoparticles loaded with dual anticancer agents for chemophotodynamic cancer therapy”,  Nanomater.,2019 (2019) 1-11.
  122. Han, X., Li, Z., Sun, J., Luo, C., Li, L., Liu, Y., Du, Y., Qiu, S., Ai, X., Wu, C., “Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation”,  Control. Release, 197 (2015) 29-40.
  123. Rao, N. V., Yoon, H. Y., Han, H. S., Ko, H., Son, S., Lee, M., Lee, H., Jo, D. G., Kang, Y. M., Park, J. H., “Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment”, Expert Opin. Drug Deliv., 13 (2016) 239-252.
  124. Chircov, C., Grumezescu, A. M., Bejenaru, L. E., “Hyaluronic acid-based scaffolds for tissue engineering”,  J. Morphol. Embryol, 59 (2018) 71-76.
  125. Zuber, G., Herlin, C., Vandamme, T., “Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications”,  Polym., 3 (2011) 469-489.
  126. Wang, H. J., Zhang, J., Liu, Y. H., Luo, T. Y., He, X., Yu, X. Q., “Hyaluronic acid-based carbon dots for efficient gene delivery and cell imaging”, RSC Adv., 7 (2017) 15613-15624.
  127. Li, W., Chen, X., “Gold nanoparticles for photoacoustic imaging”, Nanomedicine,10 (2015) 299-320.
  128. Zhu, Y., Du, J., Peng, Q., Wang, F., Hu, J., Luo, Y., Alshehri, A. A., Alzahrani, K. A., Zheng, B., Sun, X., Xiao, D., “The synthesis of highly active carbon dot-coated gold nanoparticles via the room-temperature in situ carbonization of organic ligands for 4-nitrophenol reduction”, RSC Adv.,10 (2020) 19419-19424.
  129. Kang, S. H., Nafiujjaman, M., Nurunnabi, M., Li, L., Khan, H. A., Cho, K. J., Huh, K. M., Lee, Y. K., “Hybrid photoactive nanomaterial composed of gold nanoparticles, pheophorbide-A and hyaluronic acid as a targeted bimodal phototherapy”,  Res.,23 (2015) 474-484.
  130. Hayward, S. L., Wilson, C. L., Kidambi, S., “Hyaluronic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells”, Oncotarget,7 (2016) 34158.
  131. Lima-Sousa, R., de Melo-Diogo, D., Alves, C. G., Costa, E. C., Ferreira, P., Louro, R. O., Correia, I. J., “Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy”,  Polym., 200 (2018) 93-99.
  132. Duan, Q., Ma, L., Zhang, B., Zhang, Y., Li, X., Wang, T., Zhang, W., Li, Y., Sang, S., “Construction and application of targeted drug delivery system based on hyaluronic acid and heparin functionalised carbon dots”, Colloids Surf. B., 188 (2020) 110768.
  133. Cao, L., Sahu, S., Anilkumar, P., Bunker, C. E., Xu, J., Fernando, K. S., Wang, P., Guliants, E. A., Tackett, K. N., Sun, Y. P., “Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond”,  Amer. Chem. Soc., 133 (2011) 4754-4757.
  134. Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G. D., Bhardwaj, R., Chand, S., “Luminscent graphene quantum dots for organic photovoltaic devices”,  Amer. Chem. Soc., 133 (2011) 9960-9963.
  135. Xu, Q., Kuang, T., Liu, Y., Cai, L., Peng, X., Sreeprasad, T. S., Zhao, P., Yu, Z., Li, N., “Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications”, Mater. Chem. B, 4 (2016) 7204-7219.
  136. Pandey, S., Thakur, M., Mewada, A., Anjarlekar, D., Mishra, N., Sharon, M., “Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging”,  Mater. Chem. B, 1 (2013) 4972-4982.
  137. Dharmatti, R., Phadke, C., Mewada, A., Thakur, M., Pandey, S., Sharon, M., “Biogenic gold nano-triangles: Cargos for anticancer drug delivery”, Sci. Eng. C, 44 (2014) 92-98.
  138. Pandey, S., Oza, G., Mewada, A., Shah, R., Thakur, M., Sharon, M., “Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers”,  Mater. Chem. B, 1 (2013) 1361-1370.
  139. Pandey, S., Mewada, A., Thakur, M., Pillai, S., Dharmatti, R., Phadke, C., Sharon, M., “Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO 2/C-dots) using pyrolysed rice husk and its application in bioimaging”, RSC Adv.,4 (2014) 1174-1179.
  140. Yin, J. Y., Liu, H. J., Jiang, S., Chen, Y., Yao, Y., “Hyperbranched polymer functionalized carbon dots with multistimuli-responsive property”, ACS Macro Lett., 2 (2013) 1033-1037.
  141. Liu, Y., Yu, Y. X., Zhang, W. D., “Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance”,  Alloys Compd., 569 (2013) 102-110.
  142. Tangy, A., Kumar, V. B., Pulidindi, I. N., Kinel-Tahan, Y., Yehoshua, Y., Gedanken, A., “In-situ transesterification of chlorella vulgaris using carbon-dot functionalized strontium oxide as a heterogeneous catalyst under microwave irradiation”, Energy & Fuels,30 (2016)10602-10610.
  143. Bourlinos, A. B., Bakandritsos, A., Kouloumpis, A., Gournis, D., Krysmann, M., Giannelis, E. P., Polakova, K., Safarova, K., Hola, K., Zboril, R., “Gd (III)-doped carbon dots as a dual fluorescent-MRI probe”,  Mater. Chem., 22 (2012) 23327-23330.
  144. Liu, H., Ye, T., Mao, C., “Fluorescent carbon nanoparticles derived from candle soot”,  Chem., 119 (2007) 6593-6595.
  145. D'souza, S. L., Deshmukh, B., Bhamore, J. R., Rawat, K. A., Lenka, N., Kailasa, S. K., “Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system”, RSC Adv., 6 (2016) 12169-12179.
  146. Wang, Y., Anilkumar, P., Cao, L., Liu, J. H., Luo, P. G., Tackett, K. N., Sahu, S., Wang, P., Wang, X., Sun, Y. P., “Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging”,  Biol. Med., 236 (2011) 1231-1238.
  147. Yang, Y., Wu, D., Han, S., Hu, P., Liu, R., “Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach”,  Comm., 49 (2013) 4920-4922.
  148. Boussif, O., Lezoualc H., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix. B., Behr, J. P.,  Natl. Acad. Sci. USA, 92 (1992) 7297-7301.
  149. Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., Chen, G., “Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions”,  Chem., 84 (2012) 6220-6224.
  150. Dou, Q., Fang, X., Jiang, S., Chee, P. L., Lee, T. C., Loh, X. J., “Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties”, RSC Adv., 5 (2015) 46817-46822.
  151. Mondal, S., Purkayastha, P., “α-Cyclodextrin functionalized carbon dots: pronounced photoinduced electron transfer by aggregated nanostructures”, Phys. Chem. C, 120 (2016) 14365-14371.
  152. Pandey, S., Mewada, A., Thakur, M., Tank, A., Sharon, M., “Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol”, RSC Adv., 3 (2013) 26290-26296.
  153. Wang, X., Qu, K., Xu, B., Ren, J., Qu, X., “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents”,  Mater. Chem., 21 (2011) 2445-2450.
  154. Lee, C. C., MacKay, J. A., Fréchet, J. M., Szoka, F. C., “Designing dendrimers for biological applications”,  biotechnol., 23 (2005) 1517-1526.
  155. Svenson, S., Tomalia, D. A., “Dendrimers in biomedical applications—reflections on the field”,  Drug Deliv. Rev., 64 (2012) 102-115.
  156. Masri, A., Anwar, A., Ahmed, D., Siddiqui, R. B., Raza Shah, M., Khan, N. A., “Silver nanoparticle conjugation-enhanced antibacterial efficacy of clinically approved drugs cephradine and vildagliptin”, Antibiotics,7 (2018) 100.
  157. Shaker, M. A., Shaaban, M. I., “Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study”,  J. Pharm.,525 (2017) 71-84.
  158. Thakur, M., Pandey, S., Mewada, A., Patil, V., Khade, M., Goshi, E., Sharon, M., “Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity”,  Drug deliv., 2014 (2014) 1-9.
  159. Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., Scott, M. E., “Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus”,  Environ. Microbiol.,78 (2012) 2768-2774.
  160. Bhattacharya, D., Saha, B., Mukherjee, A., Santra, C. R., Karmakar, P, “Gold nanoparticles conjugated antibiotics: stability and functional evaluation”,  Nanotechnol., 2 (2012) 14-21.
  161. Thomas, R., Jishma, P., Snigdha, S., Soumya, K., Mathew, J., Radhakrishnan, E., “Enhanced antimicrobial efficacy of biosynthesized silver nanoparticle based antibiotic conjugates”,  Chem. Commun., 117 (2020) 107978.
  162. Payne, J. N., Waghwani, H. K., Connor, M. G., Hamilton, W., Tockstein, S., Moolani, H., Chavda, F., Badwaik, V., Lawrenz, M. B., Dakshinamurthy, R., “Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity”,  Microbiol.,7 (2016) 607.
  163. Dong, X., Awak, M. A., Tomlinson, N., Tang, Y., Sun, Y. P., Yang, L., “Antibacterial effects of carbon dots in combination with other antimicrobial reagents”, PloS one, 12 (2017) e0185324.
  164. Perveen, S., Safdar, N., Yasmin, A., “Antibacterial evaluation of silver nanoparticles synthesized from lychee peel: individual versus antibiotic conjugated effects”, World J. Microbiol. Biotechnol.,34 (2018) 118.
  165. Mohsen, E., El-Borady, O. M., Mohamed, M. B., Fahim, I. S., “Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect”,  Radiat. Res. Appl., Sci., 13 (2020) 416-425.
  166. Sun, Y., Zheng, S., Liu, L., Kong, Y., Zhang, A., Xu, K., Han, C., “The Cost-Effective Preparation of Green Fluorescent Carbon Dots for Bioimaging and Enhanced Intracellular Drug Delivery”, Nanoscale Res. Lett., 15 (2020) 1-9.
  167. He, Q., Shi, J., “MSN anti‐cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition”,  Mater., 26 (2014) 391-411.
  168. Duan, Q., Ma, Y., Che, M., Zhang, B., Zhang, Y., Li, Y., Zhang, W., Sang, S., “Fluorescent carbon dots as carriers for intracellular doxorubicin delivery and track”,  Drug Deliv. Sci. Technol., 49 (2019) 527-533.
  169. Tian, T., Zhang, T., Zhou, T., Lin, S., Shi, S., Lin, Y., “Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle”, Nanoscale,9 (2017) 18402-18412.
  170. Li, Q., Zhao, D., Shao, X., Lin, S., Xie, X., Liu, M., Ma, W., Shi, S., Lin, Y., “Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery”, ACS Appl. Mater. Interf.,9 (2017) 36695-36701.
  171. Qu, D., Wang, X., Bao, Y., Sun. Z., “Recent advance of carbon dots in bio-related applications”, Phys. Mater., 3 (2020) 022003.
  172. Bertrand, N., Wu, J., Xu, X., Kamaly, N., Farokhzad, O. C., “Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology”,  Drug Deliv. Rev.,66 (2014) 2-25.
  173. Yang, X. D., Xiang, H. J., An, L., Yang, S. P., Liu, J. G., “Targeted delivery of photoactive diazido Pt IV complexes conjugated with fluorescent carbon dots”, New J. Chem., 39 (2015) 800-804.
  174. Zheng, M., Liu, S., Li, J., Qu, D., Zhao, H., Guan, X., Hu, X., Xie, Z., Jing, X., Sun, Z., “Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine”,  Mater., 26 (2014) 3554-3560.
  175. Pandey, S., Mewada, A., Thakur, M., Tank, A., Sharon, M., “Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol”, RSC Adv., 3 (2013) 26290-26296.
  176. Wang, H., Di, J., Sun, Y., Fu, J., Wei, Z., Matsui, H., del C. Alonso, A., Zhou, S., “Biocompatible PEG‐chitosan@ carbon dots hybrid nanogels for two‐photon fluorescence imaging, near‐infrared light/pH dual‐responsive drug carrier, and synergistic therapy”, Adv. Funct. Mater., 25 (2015) 5537-5547.
  177. Feng, T., Chua, H. J., Zhao, Y., “Carbon‐Dot‐Mediated Co‐Administration of Chemotherapeutic Agents for Reversing Cisplatin Resistance in Cancer Therapy”,  Nano. Mat., 4 (2018) 801-806.
  178. Kong, T., Hao, L., Wei, Y., Cai, X., Zhu, B., “Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy”, Cell Prolif., 51 (2018) e12488.
  179. Pei, M., Pai, J.Y., Du, P., Liu, P., “Facile synthesis of fluorescent hyper-cross-linked β-cyclodextrin-carbon quantum dot hybrid nanosponges for tumor theranostic application with enhanced antitumor efficacy”,  Pharm., 15 (2018) 4084-4091.
  180. Permatasari, F. A., Fukazawa, H., Ogi, T., Iskandar, F., Okuyama, K., “Design of pyrrolic-N-rich carbon dots with absorption in the first near-infrared window for photothermal therapy”, ACS Appl. Nano Mater., 1 (2018) 2368-2375.
  181. Sun, S., Chen, J., Jiang, K., Tang, Z., Wang, Y., Li, Z., Liu, C., Wu, A., Lin, H., “Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power”,  ACS Appl. Mater. Interf., 11 (2019) 5791-5803.
  182. Huang, P., Lin, J., Wang, X., Wang, Z., Zhang, C., He, M., Wang, K., Chen, F., Li, Z., Shen, G., Cui, D., “Light‐triggered theranostics based on photosensitizer‐conjugated carbon dots for simultaneous enhanced‐fluorescence imaging and photodynamic therapy”,  Mater., 24 (2012) 5104-5110.
  183. Li, S., Zhou, S., Li, Y., Li, X., Zhu, J., Fan, L., Yang, S., “Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy”, ACS Appl. Mater. Interf., 9 (2017) 22332-22341.
  184. Semeniuk, M., Yi, Z., Poursorkhabi, V., Tjong, J., Jaffer, S., Lu, Z. H., Sain, M., “Future perspectives and review on organic carbon dots in electronic applications”, ACS nano, 13 (2019) 6224-6255.