Rational Design of Phosphorus Abundant Co2P Nanoparticles Encapsulated by Nitrogen-doped Carbon Nanotubes for Superior Lithium Ion Capacitors with 4.5 Voltage

Document Type : Research Paper

Authors

North China University of Water Resources and Electric Power, Zhengzhou 450000, PR China

Abstract

   The sluggish reaction kinetics and aggregation of volume during lithiation/delithiation process are the main obstacles of anode for li-ion capacitors (LICs). Here, we use the “three bird one stone” strategy to design the anode of phosphorus abundant Co2P nanoparticles encapsulated by N-doped CNTs rationally. The Co2P nanoparticles contribute to shorten the Li+ diffusion length, while abundant phosphorus guaranteeing the high electrical conductivity and N-CNTs providing stable structure protecting layers. Hence, Co2P/N-CNTs electrode reveals a large specific capacity of 807 mAh g-1 at 0.1 A g-1 over 200 cycles and excellent rate performance of 395 mAh g-1 at 3.2 A g-1. Extraordinary, the capacitive contribution of Co2P/N-CNTs electrode at 1 mV s-1 is 80.73%, contributing to the enhanced reaction kinetics and rate capacity. The LICs comprising of Co2P/N-CNTs anode and activated carbon (AC) cathode demonstrate an outstanding energy density of 130 Wh kg-1 at 625 W kg-1 along with 90.24% capacity retention over 10000 cycles at 5 A g-1 within 4.5 V. The proposed strategy can be applied to develop promising electrode materials for promising energy storage systems.

Keywords

Main Subjects


  1. Hosseini, S. , Saghfi, M., Abiri, H., “Comparision of binary and ternary compositions of Ni-Co-Cu oxides/VACNTs electrodes for energy storage devices with excellent capacitive behavior”, J. Nanosci. Nanotechnol., 16 (2020) 91-102.
  2. Tabassum, H., Zou, R. , Mahmood, A., Liang, Z. B., Wang, Q. F., Zhang, H., Gao, S., Qu, C., Guo, W. H., GuO, S. J., “A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co‐doped graphitic nanotubes as high‐performance lithium‐ion battery anodes”, Adv. Mater., (2018) 1705441.
  3. Shang, T., Wen, Y. R., Xiao, D. D., Gu, L., Hu, Y. S., Li, H., “Atomic‐scale monitoring of electrode materials in lithium‐ion batteries using in situ transmission electron microscopy”, Adv. Energy Mater., (2017) 1700709.
  4. Xu, , Li, C. Y., Chen, L. L., Li, Z. Y., Bing, P. B., “Anchoring carbon layers and oxygen vacancies endow WO3−x/C electrode with high specific capacity and rate performance for supercapacitors”, RSC Adv., 9 (2019) 28793.
  5. Xu, J., Ding, T. T., Wang, J., Zhang, J., Wang, S., Chen, C. C., Fang, Y. Y., Wu, Z. H., Huo, K. F., Dai, J. N., “Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor”, Acta., 174 (2015) 728-734.
  6. Zheng, S. S., Xue, H. G., Pang, H., “Supercapacitors based on metal coordination materials”, Coordination Chemistry Reviews, 373 (2018) 2-21.
  7. Li, Q., Xu, Y. X., Zheng, S. S., Guo, X. T., Xue, H. G., Pang, H., “Recent progress in some amorphous materials for Supercapacitors”, Small, 14 (2018) 1800426.
  8. Wang, K. B., Xun, Q., Zhang, Q. C., “Recent progress in metal-organic frameworks as active materials for supercapacitors”, Energychem, 2 (2020) 100025.
  9. Xu, J., Li, Y. Y., Wang, L., Cai, Q. F., Li, Q. , Gao, B., Zhang, X. M., Huo, K. F., Chu, P. K., “High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes”, Nanoscale, 8 (2016) 16761.
  10. Xu, J., Liao, Z. H., Zhang, J. B., Gao, B., Chu, P. , Huo, K. F., “Heterogeneous phosphorus-doped WO3−x/nitrogen-doped carbon nanowires with high rate and long life for advanced lithium-ion capacitors”, J. Mater. Chem. A, 6 (2018) 6916-6921.
  11. Xu, J., Gao, B., Huo, K. F., Chu, P. , “Recent progress in electrode materials for nonaqueous lithium-ion capacitors”, J. Nanosci. Nanotechnol., 20 (2020) 2652-2667.
  12. Yan, W., Su, J., Yang, Z. M., Lv, S., Jin, Z., Zuo, J. L., “High-performance lithium-ion capacitors based on porosity-regulated zirconium metal-organic frameworks”, Small, 17 (2020) 2005209.
  13. Zuo, W. , Li, R. Z., Zhou, C., Li, Y. Y., Xia, J. L., Liu, J. P., “Battery-supercapacitor hybrid devices: recent progressand future prospects”, Adv. Sci., (2017) 1600539.
  14. Yang, Y., Fu, W., Lee, D. C., Bell, C., Drexler, M., Ma, Z. F., Magasinski, A., Yushin, G., Alamgir, M., “Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries”, Materials Today Energy, 16 (2020) 100410.
  15. Fullenwarth, , Darwiche, A., Soares, A., Donnadieu, B., Monconduit, L., “NiP3: a promising negative electrode for Li- and Na-ion batteries”, J. Mater. Chem. A, 2 (2014) 2050-2059.
  16. Park, J. W., Park, M., “Electrochemical li topotactic reaction in layered SnP3 for superior li-ion batteries”, Scientific Reports, 6 (2016) 35980.
  17. Kim, S. , Manthiram, A., “Phosphorus-rich CuP2 embedded in carbon matrix as a high performance anode for lithium-ion batteries”, ACS Appl. Mater. Inter., 9 (2017) 16221-16227.
  18. Kwon, H. , Kim, J. H., Jeon, K. J., Park, C. M., “CoxP compounds: electrochemical conversion/partial recombination reaction and partially disproportionated nanocomposite for Li-ion battery anodes”, RSC Adv., 4 (2014) 43227.
  19. Khayyat, S. Z., Khayyat, S. V., “Removal of mercury (II) from wastewater by magnetic solid phase extraction with polyethylene glycol (PEG)-coated Fe3O4 nanoparticles”, Nanosci. Nanotechnol., 14 (2018) 65-70.
  20. Lei, C. , Wang, F. F., Yang, J., Gao, X. F., Yu, X. Y., Yang, B., Chen, G. H., Yuan, C., Lei, L. C., Hou, Y., “Embedding Co2P nanoparticles in N-doped carbon nanotubes grown on porous carbon polyhedral for high-performance lithium-ion batteries”, Ind. Eng. Chem. Res., 57 (2018) 13019-13025.
  21. Jin, R., Li, F., Sun, Y. X., Shan, H., Fan, L. L., Li, D. J., Sun, X. L., “Metal-organic frameworks-derived Co2P@N-C@RGO with dual protection layers for improved sodium storage”, ACS Appl. Mater. Inter., 10 (2018) 14641-14648.
  22. Sun, L., Xie, J., Zhang, L., Jiang, R. Y., Wu, J., Fan, L. L., Shao, R., Chen, Z. D., Jin, Z., “2D black TiO2-xnanoplate-decorated Ti3C2 MXene hybrids for ultrafast and elevated stable lithium storage”, FlatChem, 20 (2020) 100152.
  23. Guo, Y., Yuan, P. F., Zhang, J. N., Xia, H. C., Cheng, F. Y., Zhou, M. F., Li, J., Qiao, Y. Y., Mu, S. C., Xu, Q., “Co2P-CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting”, Adv. Funct. Mater., (2018) 1805641.
  24. Zhou, D., Fan, Z., “Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries”, J. Mater. Chem. A, 6 (2018) 2139-2147.
  25. Zhu, G. Y., Ma, L. B., Lin, H. N., Zhao, P. Y., Wang, L., Hu, Y., Chen, R. P., Chen, T., Wang, Y. R., Tie, Z. X., Jin, Z., “High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode”, Nano Research, 12 (2019) 1713-1719.
  26. Zhu, G. Y., Chen, T., Wang, L., Ma, L.B., Hu, Y., Chen, R. P., Wang, Y. R., Wang, C. X., Yan, W., Tie, Z. X., Liu, J., Jin, Z., “High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode”, Energy Storage Materials, 14 (2018) 246-252.
  27. Zhu, G., Zhang, X. J., Li, Y. J., Zhao, G. Z., Xu, H. F., Jin, Z., “A carbon-coated shuttle-like Fe2O3/Fe1−xS heterostructure derived from metal-organic frameworks with high pseudocapacitance for ultrafast lithium storage”, Nanoscale Advances, 2 (2020) 5201-5208.
  28. Zheng, S. S., Guo, X. T., Xue, H. G., Pan, K. M., Liu, C. S., Pang, H., “Facile one-pot generation of metal oxide/hydroxide@metal–organic framework composites: highly efficient bifunctional electrocatalysts for overall water splitting”, Chemical Communications, 55 (2019) 10904-10907.
  29. Lv, T. T., Liu, Y. L., Wang, H., Yang, S. Y., Liu, C. S., Pang, H., “Crystal water enlarging the interlayer spacing of ultrathin V2O54VO2·2.72H2O nanobelts for high-performance aqueous zinc-ion battery”, Chemical Engineering Journal, 411 (2021) 128533.
  30. Lv, T. T., Luo, X., Yuan, G. Q., Yang, S. Y., Pang, H., “Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries”, Chemical Engineering Journal, 428 (2022) 131211.
  31. Das,, Nanda, K. K., “One-step, integrated fabrication of Co2P nanoparticles encapsulated N,P dual-doped CNTs for highly advanced total water splitting”, Nano Energy, 30 (2016) 303-311.
  32. Xu, K., Ding, H., Zhang, X., Chen, M., Hao, Z. K., Zhang, L. D., Wu, C. Z., Xie, Y., “Regulating water‐reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution”, Adv. Mater., (2017) 1606980.
  33. Guo, P., Ruan, B. Y., Liu, L. L., Zhang, L., Tao, Z. L., Chou, S. L., Wang, J. Z., Liu, H. K., “Capillary‐induced Ge uniformly distributed in N‐doped carbon nanotubes with enhanced li‐storage performance”, Small, (2017) 1700920.
  34. Shen, F., Lv, H. F., Chen, S. Q., Kopold, P., Aken, P. A., Wu, X. J., Maier, J., Yu, Y., “Peapod‐like Li3VO4/N‐doped carbon nanowires with pseudocapacitive properties as advanced materials for high‐energy lithium‐ion capacitors”, Adv. Mater., 29 (2017) 1700142.
  35. Lim, E., Jo, C., Kim, H., Kim, M., Mun, Y., Chun, J., Ye, Y., Wang, J. H., Ha, K., Roh, K. C., Kang, K., Yoon, S., Lee, J., “Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors”, ACS Nano, 9 (2015) 7497-7505.
  36. Chen, Z., Augustyn, V., Wen, J., Zhang, Y., Shen, M., Dunn, B., Lu, Y., “High‐performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites”, Mater., 23 (2011) 791-795.
  37. Banerjee, A., Upadhyay, K. K., Puthusseri, D., Aravindan, V., Madhavi, S., Ogale, S., “MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs)”, Nanoscale, 6 (2014) 4387.
  38. Que, L. F., Wang, Z. B., Yu, F. D., Gu, D. M., “3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors”, Mater. Chem. A, 4 (2016) 8716-8723.
  39. Wang, Y. K., Liu, M. C., Cao, J. Y., Zhang, H. J., Kong, L. B., Trudgeon, P., Li, X. H., Walsh, F. C., “3D hierarchically structured CoS nanosheets: Li+ storage mechanism and application of the high-performance lithium-ion capacitors”, ACS Appl. Mater. Interfaces, 12 (2020) 3709-3718.