TiO2/hydrophobic Cellulose Aerogel Nanocomposite as a New Photocatalyst for Oxidation of Alcohols and Ethylbenzene

Document Type : Research Paper


Department of Nanochemistry, Nanotechnology Research Center, Urmia University, Urmia, Iran


   Synthesis of new natural polymers-based nanocomposites is the center of attentions for the catalyst researchers on account of their sustainability. In this regard, cellulose aerogel was hydrophobized by polysilicon to give a hydrophobic bio-support which underwent deposition of TiO2 nanoparticles afforded a catalyst with high lipophilicity, superior porosity as well as high catalytic activity. The prepared nanocomposite was structurally characterized, in which the deposition of polysilicon and TiO2 nanoparticles on an aerogel compound was recognized. The aerogel exhibited good hydrophobicity, and high selectivity in oil/water absorption with 6.3 g oil absorbed by 1 g of the absorbent. Finally, the nanocomposite was employed as a heterogeneous photocatalyst in the transformation of alcohols to aldehydes/ketones, and ethylbenzene to acetophenone with the conversions laying in the range of 81-99%. Mild conditions, high yields, excellent selectivities, and recyclability and biocompatibility of the catalyst are advantages of the reactions.


Main Subjects

  1. Sheldon, R. A., Arends I. W. C. E., Hanefeld, U., “Green chemistry and catalysis”, Wiley-VCH, Weinheim, (2007).
  2. Mondal, M. I. H. “Cellulose-Based Superabsorbent Hydrogels”; Keshipour, S., Maleki, A., “Modification of Cellulose”, Springer, Cham, (2018).
  3. Keshipour, S., Khezerloo, M., “Gold nanoparticles supported on cellulose aerogel as a new efficient catalyst for epoxidation of styrene”, Iran. Chem. Soc., 14 (2017) 1107-1112.
  4. Keshipour, S., Khezerloo, M., “Au‐dimercaprol functionalized cellulose aerogel: Synthesis, characterization and catalytic application”, Organometal. Chem., 32 (2018) e4255.
  5. Zhou, S., Liu, P., Wang, M., Zhao, H., Yang, J., Xu, F., “Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation”, ACS. Sustainable Chem. Eng., 4 (2016) 6409-6416.
  6. Paakko, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindstrom, T., Berglund, L. A., Ikkala, O., “Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities”, Soft Matter., 4 (2008) 2492-2499.
  7. Zhang, M., Chen, C., Ma, W., Zhao, J., “Visible‐light‐induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye‐sensitized TiO2 and TEMPO”, Chem. Int. Ed., 47 (2008) 9730-9733.
  8. Chen, W., Li, Q., Wang, Y., Yi, X., Zeng, J., Yu, H., Liu, Y., Li, J. “Comparative study of aerogels obtained from differently prepared nanocellulose fibers”, ChemSusChem, 7 (2014) 154-161.
  9. Zhang Z., Sebe G., Rentsch D., Zimmermann, T., Tingaut, P., Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Mater., 26 (2014) 2659-2668.
  10. Zhang, W., Zhang, Y., Lu, C., Deng, Y., “Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water”, Mater. Chem., 22 (2012) 11642-11650.
  11. Yang, X., Cranston, E. D., “Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties”, Mater., 26 (2014) 6016-6025.
  12. Klemm, D., Heublein, B., Fink, H. P., Bohn, A. “Cellulose: Fascinating Biopolymer and Sustainable Raw Material”, Chem. Int. Ed., 44 (2005) 3358-3393.
  13. Jiang, F., Hsieh, Y. L. “Amphiphilic superabsorbent cellulose nanofibril aerogels”, Mater. Chem. A 2 (2014) 6337-6342.
  14. Wang, S., Peng, X., Zhong, L., Tan, J., Jing, S., Cao, X., Chen, W., Liu, C., Sun, R., “An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup”, Mater. Chem. A 3 (2015) 8772-8781.
  15. Thiruvenkatachari, R., Vigneswaran, S., Moon, S., “A review on UV/TiO2 photocatalytic oxidation process”, J. Chem. Engin., 25 (2008) 64-72.
  16. Giacco, T. D., Ranchella, M., Rol, C., Sebastiani, G. V., “Involvement of adsorption effects in the TiO2‐sensitized photooxidation rate of benzylic derivatives in CH3CN”, Physical. Org. Chem., 13 (2000) 745-751.
  17. Higashimoto, S., Suetsugu, N., Azuma, M., Ohue, H., Sakata, Y., “Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity”, Catal., 274 (2010) 76-83.
  18. Feng, W., Wu, G., Li, L., Guan, N., “Solvent-free selective photocatalytic oxidation of benzyl alcohol over modified TiO2”, Green Chem., 13 (2011) 3265-3272.
  19. Srinivas, B., Reddy, P. A. K., Rajesh, M., Kumari, V. D., Subrahmanyam, M., “Selective solar photocatalytic oxidation of ethylbenzene on C, N, and S doped TiO2”, Chem. Int., 37 (2011) 901-918.
  20. Korologos, C. A., Nikolaki, M. D. Zerva, C. N., Philippopoulos, C. J., Poulopoulos, S. G., “Photocatalytic oxidation of benzene., toluene, ethylbenzene and m-xylene in the gas-phase over TiO2-based catalysts”, Photochem. Photobiol. A Chem., 244 (2012) 24-31.
  21. Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W., “Environmental applications of semiconductor photocatalysis”, Rev., 95 (1995) 69-96.
  22. Fujishima, A., Zhang, X., Tryk, D. A., “TiO2 photocatalysis and related surface phenomena”, Sci. Rep., 63 (2008) 515-582.
  23. Ravelli, D., Dondi, D., Fagnoni, M., Albini, A., “Photocatalysis. A multi-faceted concept for green chemistry”, Soc. Rev., 38 (2009) 1999-2011.
  24. Mohamed, O. S., Gaber, A. M., Abdel-Wahab, A. A., “Photocatalytic oxidation of selected aryl alcohols in acetonitrile”, Photochem. Photobiol. A Chem., 148 (2002) 205-210.
  25. Pillai, U. R., Sahle-Demessie, E. “Selective oxidation of alcohols in gas phase using light-activated titanium dioxide”, Catal., 211 (2002) 434-444.
  26. Palmisano, G., Augugliaro, V., Pagliaro, M., Palmisano, L., “Photocatalysis: a promising route for 21st century organic chemistry”, Commun., (2007) 3425-3437.
  27. Augugliaro, V., Caronna, T., Loddo, V., Marci, G., Palmisano, G., Palmisano, L., Yurdakal, S., “Oxidation of aromatic alcohols in commercial and home-prepared irradiated rutile TiO2 aqueous suspensions: A selectivity study”, Eur. J., 14 (2008) 4640-4646.
  28. Addamo, M., Augugliaro, V., Bellardita, M., Di Paola, A., Loddo, V., Palmisano, G., Palmisano, L., Yurdakal, S., “Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO2”, Lett., 126 (2008) 58-62.
  29. Augugliaro, V., Kisch, H., Loddo, V., Lopez-Munoz, M., Marquez-Alvarez, C., Palmisano, G., Palmisano, L., Parrino, F., Yurdakal, S., “Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home-prepared titanium dioxide: 1. Selectivity enhancement by aliphatic alcohols”, Catal. A Gen., 349 (2008) 182-188.
  30. Wang, Q., Zhang, M., Chen, C., Ma, W., Zhao, J., “Photocatalytic aerobic oxidation of alcohols on TiO2: The acceleration effect of a brønsted acid”, Chem. Int. Ed., 49 (2010) 7976-7979.
  31. Yurdakal, S., Palmisano, G., Loddo, V., Augugliaro, V., Palmisano, L., “Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water”, Am. Chem. Soc., 130 (2008) 1568-1569.
  32. Keshipour, S., Adak, A., “Magnetic d‐penicillamine‐functionalized cellulose as a new heterogeneous support for cobalt (II) in green oxidation of ethylbenzene to acetophenone”, Organometal. Chem., 31 (2017) e3774.
  33. Keshipour, S., Kalam Khalteh, N., “Oxidation of ethylbenzene to styrene oxide in the presence of cellulose‐supported Pd magnetic nanoparticles”, Organometal. Chem., 30 (2016) 653-656.
  34. Keshipour, S., Ahmadi, F., Seyyedi, B., “Pd and Fe3O4 nanoparticles supported on‎ N-(2-aminoethyl) acetamide functionalized‎ cellulose as an efficient catalyst for‎ epoxidation of styrene”, Cellulose, 24 (2017) 1455-1462.
  35. Keshipour, S., Kalam Khalteh, N., “Oxidation of ethylbenzene to styrene oxide in the presence of cellulose‐supported Pd magnetic nanoparticles”, J. Nanosci. Nanotechol. 13 (2017) 219-226.
  36. Khorshidi, A. R., Shariati, Sh., “-OSO3H Functionalized Mesoporous MCM-41 Coated on Fe3O4 Nanoparticles: an Efficient and Recyclable Nano-Catalyst for Preparation of 3,2′-Bisindoles”, J. Nanosci. Nanotechol. 12 (2016) 139-147.
  37. Bamoniri, A., Pourali, A. R., Nazifi, S. M. R., “Nano Silica/ HIO4 as a Green and Reusable Catalyst for Synthesis of 2-Naphthol Azo Dyes under Grinding Conditions”, J. Nanosci. Nanotechol. 10 (2014) 197-203.
  38. Nguyen, ST., Feng, J., Le, N. T., Le, A. T. T., Hoang, N., Tan, V. B. C., Duong, H. M., “Cellulose aerogel from paper waste for crude oil spill cleaning”, Eng. Chem. Res., 52 (2013) 18386-18391.
  39. Rangel-Vázquez, N. A., Leal-García, T., “Spectroscopy analysis of chemical modification of cellulose fibers”, Mex. Chem. Soc., 54 (2010) 192-197.
  40. Liu, Z., Jian, Z., Fang, J., Xu, X., Zhu, X., Wu, S., “Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide”, J. Photoenergy, (2012) Article ID 702503.
  41. Keshipour, S., Al-Azmi, A., “Synthesis and catalytic application of Pd/PdO/Fe3O4@polymer‐like graphene quantum dots”, Organometal. Chem., 34 (2019) e5311.
  42. Al-Azmi, A., Keshipour, S., “Dimaval as an efficient ligand for binding Ru (III) on cross-linked chitosan aerogel: synthesis, characterisation and catalytic investigation”, Cellulose, 27 (2019) 895-904.
  43. Kim Y. H., Hwang, S. K., Kim, J. W., Lee, Y. S., “Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes”, Eng. Chem. Res., 53 (2014) 12548-12552.