Synthesis, Structure, Spectroscopy and Photocatalytic Studies of Nano Multi-Metal Oxide MgO∙Al2O3∙ZnO and MgO∙Al2O3∙ZnO-Curcumin Composite

Document Type : Research Paper


1 Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet, Bangladesh

2 Department of Chemistry, Shah Jalal Un iversity of Science and Technology, Sylhet, Bangladesh

3 Square Pharmaceuticals Ltd., Bangladesh


   The mixed metal nanocomposite MgO∙Al2O3∙ZnO has been prepared by coprecipitation method. The product was characterized by XRD. The average particle size was found to be 34.89 nm from XRD data. SEM and SEM-EDS were studied for evaluating surface morphology and elemental composition. The FTIR spectrum of prepared mixed metal nanocomposites MgO∙Al2O3∙ZnO and MgO∙Al2O3∙ZnO-curcumin were studied. The optical properties of the nanocomposites were studied by PL (Photoluminescence). The quantum efficiency (Φ) of MgO∙Al2O3∙ZnO and MgO∙Al2O3∙ZnO-curcumin was found to be 0.86 and 0.31, respectively in acetone. The photocatalytic activity of the nano composite, MgO∙Al2O3∙ZnO was investigated over methyl violet 6b (MV) dye under UV-Visible light irradiation. The photocatalytic activity was assessed with various parameters including variation of pH, effect of H2O2 and reusability. The dye degradation efficiency of nanocomposite was observed to be 48.7% and 93.42% for catalyst and catalyst with H2O2 at pH 9. The efficiency was 86.96% for catalyst with H2O2 at pH 7.


  1. Subhan M. A., Ahmed T., Sarker P., Pakkanen T. T., Suvanto M., Horimoto M. and Nakata H.,(2014).  “Synthesis, structure, luminescence and photophysical properties of nano CuO· ZnO· ZnAl2O4 multi metal oxide" J. Lumin., 148: 98
  2. Terai Y., Yamaoka K., Yamaguchi T.and Fujiwara Y., (2009).“Structural and luminescent properties of Er-doped ZnO films grown by metalorganic chemical vapor deposition” J. Vac. Sci. Technol., 27: 2248
  3. Sun L., Hong X., Zou P., Chu X. and Liu Y., (2012). “Preparation and characterization of multifunctional Fe3O4/ZnO/SiO2 nanocomposites”J. Alloys Compd., 535: 91
  4. Rodriguez J. A., Wang X., Hanson J. C., Liu G., JuezA. I. and Fernández-García M.,(2003). “The behavior of mixed-metal oxides: Structural and electronic properties of Ce1−xCaxO2 and Ce1−xCaxO2−xJ. Chem. Phys., 119: 5659
  5. Saleh R., Djaja N. F.  andPrakoso S. P., (2013). “The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method” J. Alloys Compd., 546: 48
  6. Lu W., Sun D. and Yu H., (2013). “Synthesis and magnetic properties of size-controlled CoNi alloy nanoparticles” J. Alloys Compd., 546: 229
  7. Subhan M. A., Monim S. A., Bhuiyan M. B. R., Chowdhury A. N., Islam M. and Hoque M. A., (2011).Synthesis, characterization of a multi-component metal oxide (Al0.88Fe0.67Zn0.28O3) and elimination of As (III) from aqueous solution” Open J. Inorg. Chem., 2: 9
  8. Manoj B. G., Rajesh K. P. and Radha V. J., (2012). “Role of mixed metal oxides in catalysis science versatile applications in organic synthesis”Catal. Sci. Technol., 2: 1113
  9. JoseA. R. and Marcos, (2007). “Synthesis, properties, and applications of oxide nanomaterials”Willey, New Jersey, 4: 24
  10. Li X., Fu J., Steinhart M., Kim D. H. and Knoll W., (2007). “Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates” Bull. Korean Chem. Soc., 6: 28
  11. Mastuli M. S., Ansari N. S., Nawawi M. A., Mahat A. M., (2012). “Effects of cationic surfactant in sol-gel synthesis of nano sized magnesium oxide”APCBEE Procedia, 3: 93
  12. Tenkgl V. S., Bakardjieva S., Marikova M., Bezdicka P., Subrt J., (2003).“Magnesium oxide nanoparticles prepared by ultrasound enhanced hydrolysis of Mg-alkoxides” Matter. Letter, 57:3998
  13. Lu J., Tang Z., Zhang Z., Shen W., (2005). “Preparation of LiFePO4with inverse opal structure and its satisfactory electrochemical properties” Mater. Res. Bull. 40: 2039
  14. Huang M.H., Wu Y., Feick H., Tran N., Weber E., Yang P., (2001).“Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport” Adv. Mater. 13: 113
  15. Huang M. H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P., (2001). “Room-temperature ultraviolet nanowire nanolasers”Science,292: 1897
  16. VayssieresL., KeisK., HagfeldtA., LindquistS.E., (2001). “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes” Chem. Mater. 13: 4395
  17. VayssieresL., (2003), “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution”Adv. Mater.15: 464
  18. WangW., ZengB., YangJ., PoudelB., HuangJ., NaughtonM.J., RenZ., (2006).“Aligned ultralong ZnO nanobelts and their enhanced field emission” Adv. Mater. 18: 3275
  19. ReddyB. M.  and KhanA., (2005).“Recent Advances on TiO2‐ZrO2 Mixed Oxides as Catalysts and Catalyst Support” Catal. Reviews, 47: 257
  20. Zeinali S., Nasirimoghaddam S.  and Sabbaghi S., (2016). “Investigation of the Synthesis of Chitosan Coated Iron Oxide Nanoparticles under Different Experimental Conditions”Int. J. Nanosci. Nanotechnol., 12 (3): 183
  21. KurianM., VargheseB., AthiraT. S.  and KrishnaS., (2016).“Novel and Efficient Synthesis of Silver Nanoparticles Using Curcuma Longa and ZingiberOfficinale Rhizome Extracts” Int. J. Nanosci. Nanotechnol., 12(3): 175
  22. Wanninger S.,Lorenz V., Subhan A., Edelmann F. T., (2015).“Metal complexes of curcumin--synthetic strategies, structures and medicinal applications” Chem. Soc. Rev., 44(15): 4986
  23. SharmaA., Pallavi, Kumar S., (2012). “Synthesis and Characterization of CeO-ZnONanocomposites”Nanoscience and Nanotechnology 2(3): 82-85
  24. ChuX.  and ZhangH.,(2009). “Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide”Mod. Appl. Sci., 3: 175
  25. MitinA.V.,(2011).“Accurate theoretical IR and Raman spectrum of Al2O2 and Al2O3 molecules”StructChem, 22: 411
  26. Al-HazmiF., AlnowaiserF., Al-GhamdiA.A., Al-GhamdiAttieh A., AlyM. M., Al-TuwirqiR. M., and El-TantawyF.,(2012). “A new large – Scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties”Superlattices and Microstructures, 52: 200
  27. HatamieS., Nouri M., Karandikar S.K., Kulkarni A., Dhole S.D., Phase D.M. and KaleS.N.,(2012). “Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents”Materials Science and Engineering C, 32: 92–97
  28. PeternelI. T., KoprivanacN., BozicA. M. and KusicH. M., (2007).“Comparative study of UV/TiO2, UV/ZnO and Photo-Fenton processes for the organic reactive dye degradation in aqueous solution” J. Hazard. Mater., 148: 477
  29. DaneshvarN., SalariD.  and KhataeeA.R., (2004). “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2Photochem. Photobio., 162: 315
  30. Roberts D. and MalatoS., (2002). “Solar photocatalysis a clean process for water detoxification” The Sci. of the Total Environ., 85: 291
  31. AzamA., AhmedA. S., OvesM., KhanM. S., HabibS. S. and MemicA.,(2012). “Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study”Int.J.Nanomed., 7: 6003
  32. SathishkumaraP., Sweenaa R., WubJ. J. and AnandanaS.,(2011). “Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation ofa textile dye in aqueous solution” J. Chem. Eng., 171: 136
  33. SaravananR., KarthikeyanS., GuptaV. K., SekaranG., NarayananV.  and Stephen A., (2013). “Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination” J.Mater. Sci. Eng., 33: 91
  34. JalilpourM.  and FathalilouM.,(2012). “Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method” Int. J. Phy. Sci., 7: 944
  35. SubhanM. A., AhmedT., AwalR., Makioka R., NakataH.,PakkanenT. T., SuvantoM. and KimB. M.,(2014). “Synthesis, structure, luminescence and photophysical properties of nano CuO·ZnO·ZnAl2O4 multi metal oxide”J. Lumin., 146: 123
  36. RathodS., ArbadB. and LandeM.,(2010).“Preparation, characterization, and catalytic application of a nanosized Ce1MgxZr1-xO2 solid heterogeneous catalyst for the synthesis of tetrahydrobenzo [b] pyran derivatives”Chin. J. Catal., 6: 631
  37. MadhusudhanaN., YogendraK., Mahadevan K. M. and NaikS.,(2011). “Photocatalytic degradation of Coralene Dark Red 2B azo dye using calcium zincate nanoparticle in presence of natural sunlight: an aid to environmental remediation”Int. J. Chem. Eng. Appl., 2: 294
  38. WangX. K., ChenG. H. and GuoW. L., (2003). “Sonochemical Degradation Kinetics of Methyl Violet in Aqueous Solutions”Molecules., 8: 40.
  39. JunjieL., ShiqingL., YuyangH., and JiaqiangW.,(2008). “Adsorption and degradation of the cationic dyes over Co doped amorphous mesoporous titania–silica catalyst under UV and visible light irradiation”Microp. Mesop. Mater., 115: 416
  40. Chu X. andZhangH., (2009). “Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide”Mod. Appl. Sci., 3: 175
  41. S. Naskar, S. A. Pillay and M. Chanda,(1998). “Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet”J. Photochem. Photobiol. Chem. A, 113: 257
  42. KasanenJ., SalstelaJ., SuvantoM. and PakkanenT. T.,(2011). “Photocatalytic degradation of methylene blue in water solution by multilayer TiO2 coating on HDPE”Appl. Surf. Sci., 258: 1738