Study on Polystyrene/MWCNT ‎Nanocomposite as a Temperature Sensor

Document Type : Research Paper


Radiation Application Research School, Nuclear Science Technology Research Institute, P. O. ‎Box 11365-3486, Tehran, Iran‎


   The aim of this research is to fabricate a novel temperature sensor for any calorimetry system. A new mixed solution method was introduced to prepare polystyrene/multiwall carbon nanotube nanocomposite samples with different weight percentages as 0.05, 0.1, 0.28, 1, and 2 of MWCNTs. To demonstrate the dispersion state of the inclusion into the polymer matrix, the SEM analysis was applied. Also, XRD and Raman spectroscopy analyses were carried out. The electrical percolation threshold was investigated and achieved at about 0.28 weight percent of the inclusion. Finally, the electrical resistance of the samples was measured from room temperature up to ~100ºC. Consequently, positive temperature coefficient and negative temperature coefficient effects were observed before and after Tg for the most nanocomposite samples, respectively. The best linear response of the resistance-temperature curve was achieved at 20-50ºC, which using a second-order fitting curve it can be used up t0 ~70ºC. Results show that the polystyrene/multiwall carbon nanotube nanocomposite near the percolation threshold can be used as a temperature sensor for calorimetric purposes.


1.     Yamamoto, N., Guzman de Villoria, R., Wardle, B. L., "Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes", Composites Science and Technology, 72(16) (2012) 2009-2015.
2.     Puch, F., Hopmann, C., "Morphology and tensile properties of unreinforced and short carbon fibre reinforced Nylon 6/multiwalled carbon nanotube-composites", Polymer, 55(13) (2014) 3015-3025.
3.     Vennerberg, D., Hall, R., Kessler, M. R., "Supercritical carbon dioxide-assisted silanization of multi-walled carbon nanotubes and their effect on the thermo-mechanical properties of epoxy nanocomposites", Polymer, 55(16) (2014) 4156-4163.
4.     Gong, S., Zhu, Z. H., Meguid, S. A., "Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes",Polymer, 56(0) (2015) 498-506.
5.     Malekie, S., Ziaie, F., "Study on a novel dosimeter based on polyethylene–carbon nanotube composite", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791 (2015) 1-5.
6.     Malekie, S., Ziaie, F., Esmaeli, A., "Study on dosimetry characteristics of polymer–CNT nanocomposites: Effect of polymer matrix",Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 816 (2016) 101-105.
7.     Malekie, S., Ziaie, F., Feizi, S., Esmaeli, A., "Dosimetry characteristics of HDPE-SWCNT nanocomposite for real time application", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 833 (2016) 127-133.
8.     Malekie, S., Ziaie, F., Naeini, M. A., "Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics", Kerntechnik, 81(6) (2016) 647-650.
9.     Feizi, S., Malekie, S., Rahighi, R., Tayyebi, A., Ziaie, F., "Evaluation of dosimetric characteristics of graphene oxide/PVC nanocomposite for gamma radiation applications", Radiochimica Acta, 105(2) (2017) 161-170.
10.  Mosayebi, A., Malekie, S., Ziaie, F., "A feasibility study of polystyrene/CNT nano-composite as a dosimeter for diagnostic and therapeutic purposes", Journal of Instrumentation, 12(05) (2017) P05012.
11.  Mosayebi, A., Malekie, S., Rahimi, A., Ziaie, F., "Experimental study on polystyrene-MWCNT nanocomposite as a radiation dosimeter", Radiation Physics and Chemistry, (2019) 108362.
12.  Owen, P., "Modelling a Calorimeter for High Dose Rate Brachytherapy", (Master of Science), University of Surrey, (2011).
13.  Giuliani, A., Placidi, M., Di Francesco, F., Pucci, A., "A new polystyrene-based ionomer/MWCNT nanocomposite for wearable skin temperature sensors", Reactive and Functional Polymers, 76 (2014) 57-62.
14.  Jeon, J., Lee, H. B. R., Bao, Z., "Flexible wireless temperature sensors based on Ni microparticle‐filled binary polymer composites", Advanced Materials, 25(6) (2013) 850-855.
15.  Wu, Y., Rao, Y.-J., Chen, Y.-h., Gong, Y., "Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators", Optics express, 17(20) (2009) 18142-18147.
16.  Matzeu, G., Pucci, A., Savi, S., Romanelli, M., Di Francesco, F., "A temperature sensor based on a MWCNT/SEBS nanocomposite", Sensors and Actuators A: Physical, 178 (2012) 94-99.
17.  Mahadeva, S. K., Yun, S., Kim, J., "Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite", Sensors and Actuators A: Physical, 165(2) (2011) 194-199.
18.  Han, Z., Fina, A., "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review", Progress in polymer science, 36(7) (2011) 914-944.
19.  S.McLachlan, D., Sauti, G., "The AC and DC Conductivity of Nanocomposites", Nanomaterials, (2007)..
20.  Zdenko, S., Dimitrios, T., Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35 (2010) 357-401.
21.  Belashi, A., "A Dissertation entitled Percolation Modeling in Polymer Nanocomposites", (2011).
22.  Alamusi, Hu, N., Fukunaga, H., Atobe, S., Liu, Y., Li, J., "Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites", Sensors, 11(11) (2011) 10691.
23.  Neitzert, H.-C., Landi, G., Sorrentino, A., "Joule Heating Induced Stabilization of a Resistive Temperature Sensor Based on a Syndiotactic Polystyrene/MWCNT Composite", AISEM Annual Conference on Sensors and Microsystems (pp. 111-117) , Springer, (2019).
24.  Maiti, S., Shrivastava, N. K., Suin, S., Khatua, B., "Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking", ACS applied materials interfaces, 5(11) (2013) 4712-4724.
25.  Wang, F., Zhang, K., Liang, W., Wang, Z., Yang, B., "Experimental and analytical studies on the flexible, low-voltage electrothermal film based on the multi-walled carbon nanotube/polymer nanocomposite", Nanotechnology, 30(6) (2018) 065704.
26.  Niculaescu, C., Olar, L., Stefan, R., Todica, M., Pop, C. V., XRD and IR investigations of some commercial polystyrene samples thermally degraded", Studia Universitatis Babes-Bolyai, Chemia, 63(2) (2018).
27.  Sen, P., Suresh, K., Kumar, R. V., Kumar, M., Pugazhenthi, G., "A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites: effect of modified MWCNT content", Journal of Science: Advanced Materials and Devices, 1(3) (2016) 311-323.
28.  Faiella, G., "Process tuning of physical properties of carbon nanotubes polymer composites", Università degli Studi di Napoli Federico II, (2009).
29.  Li, L., Lou, Z., Han, W., Chen, D., Jiang, K., Shen, G., "Highly Stretchable Micro‐Supercapacitor Arrays with Hybrid MWCNT/PANI Electrodes", Advanced Materials Technologies, 2(3) (2017) 1600282.
30.  Qu, Y., Lu, C., Su, Y., Cui, D., He, Y., Zhang, C., Zhuang, X., "Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage", Carbon, 127 (2018) 77-84.
31.  Aguilar, J. O., Bautista-Quijano, J. R., Aviles, F., "Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films", EXPRESS Polymer Letters, 4(5) (2010) 292-299.
32.  Apsley, N., Hughes, H. P., "Temperature- and field-dependence of hopping conduction in disordered systems", Philos. Mag., 3 (1974) 963.
33.  Saavedra, M. S., "Novel Organic Based Nano-composite Detector Films: The Making and Testing of CNT Doped Poly(acrylate) Thin Films on Ceramic Chip Substrates", University of Surrey, Guildford, Surrey, (2005).
34.  Safadi, B., Andrews, R., Grulke, E., "Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films", Journal of applied polymer science, 84(14) (2002) 2660-2669.
35.  Kota, A. K., Cipriano, B. H., Duesterberg, M. K., Gershon, A. L., Powell, D., Raghavan, S. R., Bruck, H. A., "Electrical and rheological percolation in polystyrene/MWCNT nanocomposites", Macromolecules, 40(20) (2007) 7400-7406.
36.  Sun, G., Chen, G., Liu, Z., Chen, M., "Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites", Carbon, 48(5) (2010) 1434-1440.
37.  Mazinani, S., Ajji, A., Dubois, C., "Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat", Polymer, 50(14) (2009) 3329-3342.
38.  Kara, S., Arda, E., Dolastir, F., Pekcan, Ö., "Electrical and optical percolations of polystyrene latex–multiwalled carbon nanotube composites", Journal of colloid and interface science, 344(2) (2010) 395-401.
39.  Shah, A., Rizvi, T., "Improvement in electrical and thermal behavior of polystyrene/multiwalled carbon nanotubes nanocomposites", Measurement, 46(4) (2013) 1541-1550.
40.  Bhatia, R., Galibert, J., Menon, R., "Magnetic field induced delocalization in multi-wall carbon nanotube-polystyrene composite at high fields", Carbon, 69 (2014) 372-378.
41.  Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C. E., Loos, J., "Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology", Carbon, 45(15) (2007) 2897-2903.
42.  Wang, X., Jana, S. C., "Syndiotactic polystyrene aerogels containing multi-walled carbon nanotubes", Polymer, 54(2) (2013) 750-759.
43.  Sachdev, V. K., Bhattacharya, S., Patel, K., Sharma, S. K., Mehra, N. C., Tandon, R. P., "Electrical and EMI shielding characterization of multiwalled carbon nanotube/polystyrene composites", Journal of Applied Polymer Science, 131(24) (2014).
44.  Kažukauskas, V., Kalendra, V., Bumby, C., Ludbrook, B., Kaiser, A., "Electrical conductivity of carbon nanotubes and polystyrene composites", physica status solidi (c), 5(9) (2008) 3172-3174.
45.  Arjmand, M., Apperley, T., Okoniewski, M., Sundararaj, U., "Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites", Carbon, 50(14) (2012) 5126-5134.
46.  Shrivastava, N. K., Khatua, B., "Development of electrical conductivity with minimum possible percolation threshold in multi-wall carbon nanotube/polystyrene composites", Carbon, 49(13) (2011) 4571-4579.
47.  Zhang, B., Fu, R. W., Zhang, M. Q., Dong, X. M., Lan, P. L., Qiu, J. S., "Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene", Sens. Actuators, B           109(2) (2005) 323-328.
48.  Kim, S. T., Choi, H. J., Hong, S. M., "Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes", Colloid and polymer science, 285(5) (2007) 593-598.
49.  Poa, C., Silva, S., Watts, P., Hsu, W., Kroto, H., Walton, D., "Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix", Applied physics letters, 80(17) (2002) 3189-3191.
50.  Mittal, V., "Optimization of polymer nanocomposite properties", Germany , John Wiley Sons, (2009).
51.  Babal, A. S., Gupta, R., Singh, B. P., Dhakate, S. R., "Depression in glass transition temperature of multiwalled carbon nanotubes reinforced polycarbonate composites: effect of functionalization", Rsc Advances, 5(54) (2015) 43462-43472.
52.  Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M., "Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes", Composites Part A: Applied Science and Manufacturing, 38(5) (2007) 1331-1336.
53.  Borhani, M., Ziaie, F., Bolorizadeh, M., Mirjalili, G., "Influence of temperature on breakdown voltage of 10 MeV electron beam irradiated LDPE and HDPE", Nukleonika, 51(3) (2006) 179-182.