Application of Supercritical Fluid ‎Technology for Preparation of Drug Loaded ‎Solid Lipid Nanoparticles

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, ‎Iran. ‎

2 Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical ‎Sciences, Tehran, Iran. ‎

3 JaberEbneHayyan National Research Laboratory, NSTRI, Tehran, Iran.‎

4 Department of Biochemistry, Faculty of medicine, Tehran University of Medical Sciences, ‎Tehran, Iran.‎

Abstract

   Small changes in pressure or temperature, close to the critical point, lead to large changes in solubility of supercritical carbon dioxide (CO2). Environmentally friendly supercritical CO2 is the most popular and inexpensive solvent which has been used for preparation of nanodrugs and nanocarriers in drug delivery system with supercritical fluid technology. Delivery of a drug is one of the most challenging research areas in pharmaceutical sciences. With a combination of drugs and innovative delivery systems such as lipid nanocarriers, drugs efficiency and safety have been improved significantly. There are various techniques available to produce drug loaded solid lipid nanoparticles. Among them, supercritical fluid technology has been identified as potentially effective and applicable approach which has attracted increasing attention during recent years. This technique has several advantages such as avoid the use of solvents, particles are obtained as a dry powder, instead of suspensions, mild pressure and temperature conditions can be applied. Nevertheless, little attention has been paid to formation of drug loaded solid lipid nanoparticles by supercritical fluid technology. In this paper, we present a brief introduction to solid lipid nanocarriers. Then a general overview of different processes of supercritical fluid technology has been provided and also case studies are presented to show the potential benefits of this approach in drug loaded solid lipid nanoparticle production. 

Keywords


  1. Bhalekar M. R., Pokharkar V., Madgulkar A., Patil N., Patil, N., (2009). “Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery”, A.A.P.S. Pharm. Sci. Tech, 10: 289-296.
  2. Pardeshi C., Rajput P., Belgamwar V., Tekade A., Patil G., Chaudhary K., Sonje A., (2012). “Solid lipid based nanocarriers: An overview”, A.C.T.A. Pharm, 62:433–472.
  3. Reddy R. N., Shariff A., (2013). “Solid lipid nanoparticles: an advanced drug delivery system”, Int. J. Pharm. Sci. Res., 4(1): 161-171.
  4. Sarathchandiran I., (2012). “A review on nanotechnology in solid lipid nanoparticles”, Int. J. Pharm. Dev. Tec., 2(10): 45-61.
  5. Ramteke K. H., Joshi S. A., Dhole S.N., (2012).”Solid lipid nanoparticle: a review”, I.O.S.R. J. Pharm., 2(6): 34-44.
  6. Severino P., Pinho S. C., Souto  E. B., Santana M. H. A., (2011). “Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles”, Colloids and surfaces B., 86(1): 25-30. 
  7. Mulla J. A. S., Hiremath S. P., Sharma N. K., (2012). “Repaglinide loaded solid lipid nanoparticles: design and characterization”. R.G.U.H.S J. Pharm. Sci., 2(4): 41-49.
  8. Mukherjee S., Ray S., Thakur R.S., (2009). “Solid lipid nanoparticles: A modern formulation approach in drug delivery system”, Ind. J. Pharm. sci., 71(4): 349-358.
  9. Pawar B., Gavale Chandrakant S., Akrte. Anup, M., Baviskar. Dheeraj T., (2011). “Solid lipid nanoparticles: the beneficial carrier for the delivery of lipid soluble drugs”, In. J. Pharm. Res. Dev., 3(11): 200 – 209.
  10. Mehnert W., Mader K., (2001). “Solid lipid nanoparticles production, characterization and applications”, Adv. Drug. Del. Rev., 47:165–196.
  11. Waghmare A. S., Grampourohit N. D., Gadhave M. V., Gaikwad D. D., Jadhav S. L., (2012). “Solid lipid nanoparticles: a promising drug delivery system”, In. Res. J. Pharmacy, 3(4): 100-107.
  12. Kaur T., Slavcev R., (2013). “Solid lipid nanoparticles: tunable anti-cancer gene/drug delivery systems”, IN.TECH, 53-73.
  13. Ekambaram P., Abdul Hasan Sathali A., Priyanka K., (2012). “Solid lipid nanoparticles: a review”, Sci. Revs. Chem. Commun., 2(1): 80-102.
  14. Garud A., Singh D., Garud N., (2012). “Solid lipid nanoparticles (SLN): method, characterization and applications”, In. Cur. Pharm. J., 1(11): 384-393.
  15. Uner M., Yener G., (2007). “Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives”, In. J. Nanomedicine., 2(3): 289–300.
  16. Paragati S., Kuldeep S., Ashok S., Satheesh M., (2009). “Solid lipid nanoparticles: a promising drug delivery technology”, In. J.Pharm. Sci. Nanotech., 2(2): 509-517.
  17. Huang Z., Sun G. B., Chiew Y. C., Kawi S., (2005), “Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS)”, Powder. Tech., 160: 127 – 134.
  18. Jung J., Perrut M., (2001). “Particle design using supercritical fluids: Literature and patent survey”, J. Supercritical Fluids., 20: 179-219.
  19. Reverchon E., Adamia R., (2006). “Nanomaterials and supercritical fluids”, J. Supercritical Fluids., 37: 1–22.
  20. Martín A., Cocero M. J., (2008). “Micronization processes with supercritical fluid: Fundamentals and mechanisms”, Adv. Drug. Del. Rev., 60: 339-350.
  21. Ting S. S. T., Macnaughton S. J., Tomasko D. L., Foster N. R., (1993). “Solubility of naproxen in supercritical carbon dioxide with and without co-solvents”, Ind. Eng. Chem. Res., 32: 1471-1481.
  22. Meziani M. J., Pathak P., Sun Y. P., (2009). “Supercritical Fluid Technology for Nanotechnology in Drug Delivery, Nanotechnology in Drug Delivery”, American Association. Pharma. Sci., 69-104.
  23. Werling J. O., Debenedetti P. G., (1999). “Numerical modeling of mass transfer in the supercritical antisolvent process”. J. Supercritical Fluids, 16: 167–181.
  24. Bahrami M., Ranjbarian S., (2007). “Production of micro- and nano-composite particles by supercritical carbon dioxide”, J. Supercritical Fluids, 40: 263–283.
  25. Akbari Z., Amanlou M., Karimi-Sabet J., Golestani A., Shariaty Niasar M., (2014). “Preparation of carbamazepine nanoparticles by supercritical fluid expansion depressurization process”,The 8th International Chemical Engineering Congress and Exhibition, Kish Island, Iran.
  26. Su C. S., Tang M., Chen Y. P., (2009). “Micronization of nabumetone using the rapid expansion of supercritical solution (RESS) process”, J. Supercritical Fluids, 50: 69–76.
  27. Hirunsit P., Huang Z., Srinophakun T., Charoenchaitrakool M., Kawi S., (2005). “Particle formation of ibuprofen–supercritical CO2 system from rapid expansion of supercritical solutions (RESS): A mathematical model”, Powder Technology, 154: 83 – 94.
  28. Zhiyi L., Jingzhi J., Xuewu L., Shunxuan Z., Yuanjing X., Jian W., (2009). “Preparation of griseofulvin microparticles by supercritical fluid expansion depressurization process”, Powder Technology, 182: 459 – 465.
  29. Li G., Chu J., Song E. S., Row K. H., Lee K. H., Lee Y. W., (2006). “Crystallization of acetaminophen micro-particle using supercritical carbon dioxide”, Kor. J. Chem. Eng., 23(3): 482-487.
  30. Li Z., Jiang J., Liu X., Zhao S., Xia Y., Tang H., (2007). “Preparation of erythromycin microparticles by supercritical ­fluid expansion depressurization”, J. Supercritical Fluids, 41: 285–292.
  31. Lin P. C., Su C. H., Tang M., Chen Y. P., (2011). “Micronization of tolbutamide using rapid expansion of supercritical solution with solid co-solvent (RESS-SC) process”, Res. Chem. Inter. med., 37:153–163.
  32. Cocero M. J., Martín A., Mattea F., Varona S., (2009). “ Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications”, J. Supercritical Fluids, 47(3): 546-555.
  33. Garlapati C., Madras G., (2010). “Solubilities of palmitic and stearic fatty acids in supercritical carbon dioxide”, J. Chem. Thermodynamics, 42:193-197.
  34. Akbari Z., Amanlou M., Karimi-Sabet J., Golestani A., Shariaty Niasar M., (2014). “Preparation and characterization of solid lipid nanoparticles through rapid expansion of supercritical solution”, Ind. J. Pharm. Sci. Tech., 5(5):1693-1704.
  35. David L. Pearce., (1990). “Solubility of triglycerides in supercritical carbon dioxide”, PHD Thesis, University of Canterbury, Canterbury.
  36. Bettini R., Bonassi L., Castoro V., Rossi A., Zema L., Gazzaniga A., Giordano F., (2001). “Solubility and conversion of carbamazepine polymorphs in supercritical carbon dioxide”, Eur. J. Pharm. Sci., 13: 281–286.
  37. Chim R., Marceneiro S., De Matos M. B. C., Braga M. E. M., Dias A. M. A., De Sousa H. C., (2013). “Solubility of poorly soluble drugs in supercritical carbon dioxide: experimental measurement and density-based correlations”, 3th Iberoamerican Conference on Supercritical Fluids Cartagena de Indias, Colombia.
  38. Zeinolabedini Hezave A., Khademi M. H., Esmaeilzadeh F., (2012). “Measurement and modeling of mefenamic acid solubility in supercritical carbon dioxide”, Fluid Phase Equilibria, 313: 140– 147.
  39. Duarte A. N. C., Coimbra P., De Sousa H. C., Duarte C. M. M., (2004). “Solubility of flurbiprofen in supercritical carbon Dioxide”, J. Chem. Eng. Data., 49(3): 449-452.
  40. Rajaei H., Zeinolabedini Hezave A., Lashkarbolooki M., Esmaeilzadeh F., Ozlati R., (2013). “Solubility of cyproheptadine in supercritical carbon dioxide, experimental and modeling approaches”, J. Supercritical Fluids, 84:13-19.
  41. Duarte A. N. C., Santiago S., De Sousa H. C., Duarte C. M. M., (2005). “Solubility of acetazolamide in supercritical carbon dioxide in the presence of ethanol as a cosolvent”, J. Chem. Eng. Data., 50: 216-220.
  42. Vatanara A., Rouholamini Najafabadi A., Khajeh M., Yamini Y., (2005). “Solubility of some inhaled glucocorticoids in supercritical carbon dioxide”, J. Supercritical Fluids, 33: 21-25.
  43. Huang Z., Lu W. D., Kawi S., Chiew Y. C., (2004). “Solubility of aspirin in supercritical carbon dioxide with and without Acetone”, J. Chem. Eng. Data., 49:1323-1327.
  44. Asghari-Khiavi M., Yamini Y., Farajzadeh M. A., (2004). “Solubility of two steroid drugs and their mixtures in supercritical carbon dioxide”, J. Supercritical Fluids, 30:111-117.
  45. Burgos-Solorzano G. I., Brennecke J. F., Stadtherr M. A., (2004). “Solubility measurements and modelling of molecules of biological and pharmaceutical interest with supercritical CO2”, Fluid Phase Equilibria, 220: 57-69.
  46. Huang Z., Kawi S., Chiew Y. C., (2004). “Solubility of cholesterol and its esters in supercritical carbon dioxide withand without cosolvents”, J. Supercritical Fluids, 30:25-39.
  47. Garmroodi A., Hassan J., Yamini Y., (2004). “Solubilities of the Drugs Benzocaine, Metronidazole Benzoate, and Naproxen in Supercritical Carbon Dioxide”, J. Chem. Eng. Data., 49: 709-712.
  48. Demessie E. S., Pillai U. R., Junsophonsri S., Levien K. L., (2003). “Solubility of Organic Biocides in Supercritical CO2 and CO2 + Cosolvent Mixtures”, J. Chem. Eng. Data., 48: 541-547.
  49. Jara-Morante E., Suleiman S., Antonio Estévez L., (2003). “Solubilities of imipramine HCl in supercritical carbon dioxide”, Ind. Eng. Chem. Res., 42(8): 1821-1823.
  50. Xing H., Yang V., Su B., Huang M., Ren Q., (2003). “ Solubility of artemisinin in supercritical carbon dioxide”, J. Chem. Eng. Data., 48:330-332.
  51. Asghari-Khiavi M., YaminiY., (2003). “Solubility of the drugs bisacodyl, methimazole, methylparaben, and iodoquinol in Supercritical Carbon Dioxide”, J. Chem. Eng. Data., 48: 61-65.
  52. Yamini Y., Hassan J., Haghgo S., (2001). “Solubilities of some nitrogen - containing drugs in super critical carbon dioxide”, J. Chem. Eng. Data., 46 (2): 451–455.
  53. Hojjati M., Yamini Y., Khajeh M., Vatanara A., (2007). “Solubility of some statin drugs in supercritical carbon dioxide andrepresenting the solute solubility data with several density-based correlations”, J. Supercritical Fluids, 41:187–194.
  54. Turk M., Upper G., Hils P., (2006). “Formation of composite drug–polymer particles by co-precipitation during the rapid expansion of supercritical fluids”,  J. of Supercritical Fluids, 39:253–263.
  55. Sanea A., Limtrakul, J., (2009). “Formation of retinylpalmitate-loaded poly(l-lactide) nanoparticles using rapid expansion of supercritical solutions into liquid solvents (RESOLV)”, J. of Supercritical Fluids, 51: 230–237.
  56. Mishima L., Matsuyama K., Tanabe D., Timothy S.Y., Young J., Johnston K.P., (2000). “Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent”, J. A.I.C.h.E., 46:857-865.
  57. Tom J. W., Debenedetti P. G., (1994). “Precipitation of poly(L-lactic acid) and composite poly(L-lactic acid)-pyrene particles by rapid expansion of supercritical solutions”, J. Supercritical Fluids, 7: 9-29.
  58. Akbari Z., Amanlou M., Karimi-Sabet J., Golestani A., Shariaty Niasar M., (2015). “Production of Ibuprofen loaded solid lipid nanoparticles using rapid expansion of supercritical solution”, J. NanoR., 31:15- 29.
  59. Akbari Z., Amanlou M., Karimi-Sabet J., Golestani A., Shariaty Niasar M., (2014). “Characterization of carbamazepine loaded solid lipid nanoparticles prepared by rapid expansion of supercritical solution”, Trop. J. Pharm. Res., 13(12): 1955-1961.
  60. Alhaj N.A., Abdullah R., Ibrahim S., Bustamam A., (2008). “Tamoxifen drug loading solid lipid nanoparticles prepared by hot high pressure homogenization techniques”, American J. Pharma. Toxic., 3 (3): 219-224.
  61. Gambhire M., Bhalekar M., Shrivastava B., (2011). “Bioavailability assessment of simvastatin loaded solid lipid nanoparticles after oral administration”,Asian J. Parma. Sci., 6 (6): 251-258.
  62. Yang T., Sheng H. H., Feng N. P., Wei H., Wang Z. T., Wang C. H., (2013). “Preparation of and rographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity”, J. Pharm. Sci., 102(12): 4414–4425.
  63. Xiang Q. Y., Wang M. T., Chen F., Gong T., Jian Y., Zhang Z. R., Huang Y., (2007). “Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles”, Arch. Pharm. Res., 30: 519-525.
  64. Chen J., Dai W.T., He Z.M., Gao L., Huang X., Gong J. M., Xing H. Y., Chen W.D., (2013). “Fabrication and evaluation of curcumin-loaded nanoparticles based on solid lipid as a new type of colloidal drug delivery system”,Ind. J. Pharm. Sci., 75(2):178-184.
  65. Kumar P.P., Gayatri P., Sunil R., Jaganmohan S., Madhusudan Rao Y., (2012). “Atorvastatin loaded solid lipid nanoparticles: formulation, optimization, and in - vitro characterization”, I.O.S.R. Pharmacy, 2(5): 23-32.
  66. Zhang Z., Gu C., Peng F., Liu W., Wan J., Xu H., Waikei Lam C., Yang X., (2013). “Preparation and optimization of triptolide-loaded solid lipid nanoparticles for oral delivery with reduced gastric irritation”, Molecules, 18: 13340-13356.
  67. Potta S. G., Minemi S., Nukala R. K., Peinado C., Lamprou D. A., Urquhart A., Douroumis D., (2011). “Preparation and characterization of ibuprofen solid lipid nanoparticles with enhanced solubility”,  J. Microencapsulation, 28(1): 74–81.
  68. Wang Y., Zhua L., Donga Z., Xiea S., Chena X., Lua M., Wanga X., Li X., Zhoua W. Z., (2012). “Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions”, Colloids and Surfaces B: Biointerfaces, 98: 105– 111.
  69. Byrappa K., Ohara S., Adschiri T., (2008). “Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications”, Adv. Drug Del. Rev., 60: 299–327.
  70. Martın a., Mattea F., Gutierrez L., Miguel F., Cocero M. J., (2007). “Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process”, J. Supercritical Fluids, 41:138–147.
  71. Reverchon E., Adami R., Caputo G., De Marco I., (2008). “Spherical microparticles production by supercritical antisolvent precipitation: Interpretation of results”, J. Supercritical Fluids, 47: 70–84.
  72. Montes A., Tenorio A. L., Gordillo M. D., Pereyra C. M., (2011). “Martínez de la Ossa, E.G. Supercritical antisolvent precipitation of ampicillin in complete miscibility conditions”, Ind. Eng. Chem. Res., 50 (4): 2343–2347.
  73. Wang Y., Dave R. N., Pfeffer R., (2004) “Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process”, J. Supercritical Fluids, 28: 85–99.
  74. Kalani M., Yunus R., (2011). “Application of supercritical antisolvent method in drug encapsulation: a review”, Int. J. Nanomedicine, 6:1429–1442.
  75. Wenfeng L., Guijin L, Lixian L, Juan W., Yangxiao L., Yanbin J. (2012). “Effect of process parameters on co-precipitation of paclitaxel and poly(L-lactic acid) by supercritical antisolvent process”, Chinese. J. Chem. Eng., 20(4): 803—813.
  76. Majerik V., Charbit G., Badens E., Horvath G., (2007). “LoSzokonya, L., Bosc, N., Teillau, E. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation”, J. of Supercritical Fluids,40:101–110.
  77. Montes A., Gordillo M. D., Pereyra C., Martínez de la Ossa M. G., (2011). “Co-precipitation of amoxicillin and ethyl cellulose microparticles by supercritical antisolvent process”, J. Supercritical Fluids, 60: 75– 80.
  78. Uzun I., Sipahigil O., Dincer S., (2011). “Coprecipitation of cefuroxime axetil–PVP composite microparticles by batch supercritical antisolvent process”, J. Supercritical Fluids, 55:1059–1069.
  79. Montes A., Gordillo M. D., Pereyra C., Martínez de la Ossa E.J., (2012). “Polymer and ampicillin co-precipitation by supercritical antisolvent process”, J. Supercritical Fluids, 63: 92–98.
  80. Lesoin L., Crampon C., Boutin O., Badens E., (2011). “Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method”, J. Supercritical Fluids, 57: 162–174.
  81. SantoI. E.,  PedroA. S.,  Fialho R., Cabral-Albuquerque, E., (2013). “Characteristics of lipid micro- and nanoparticles based on supercritical formation for potential pharmaceutical application”, Nanoscale Research Letters., 8:386, 1-17. 
  82. Vezzù K., Borin D., Bertucco A., Bersani S., Salmaso S.,  Caliceti P., (2010). “Production of lipid microparticles containing bioactive molecules functionalized with PEG”, Journal of Supercritical Fluids, 54:328-334. 
  83. García-González C. A.,  Argemí A.,  Sampaio de Sousa A. R., Duarte C.M.M., Saurina J., Domingo C., (2010). “Encapsulation efficiency of solid lipid hybrid particles prepared using the PGSS technique and loaded with different polarity active agents”, J. Supercritical Fluids,  54(3): 342–347.
  84. Elvassore N., Flaibani M., Vezzù K., Bertucco A., Calicetti P., (2003). “Lipid System Micronization for Pharmaceutical Applications by PGSS Techniques”, 6thInternational Symposium on Supercritical Fluid, Versailles, France.
  85. Sampaio de Sousa A. R.,  Simplício A. L., De Sousa H. C., Duarte C. M. M., (2007). “Preparation of glyceryl monostearate-based particles by PGSS—Application to caffeine”, J. Supercritical Fluids.  43:120- 125. 
  86. Warwick B., Dehghani F., Foster N. R., (2004). “Micronization of Copper Indomethacin Using Gas Antisolvent Processes”, Ind. Eng. Chem. Res., 41: 1993-2004
  87. Rantakyla M., (2004). “Particle production by supercritical antisolvent processing techniques”, PHD thesis, Helsinki University of Technology, Espoo, Finland.
  88. Braeuer A., Adami R., Dowy S., Rossmann M., Leipertz, A., (2011). “Observation of liquid solution volume expansion during particle precipitation in the supercritical CO2 antisolvent process”, J. Supercritical Fluids, 56: 121–124.
  89. Elvassoren N., Bertucco A., Caliceti P., (2001). “Production of insulin-loaded poly(ethylene glycol)/ poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques”, J. Pharm. Sci., 90: 1628-1638.
  90. Sala S., Elizondo E., Moreno E., Calvet T., Cuevas-Diarte M.A., Ventosa N., Veciana J., (2010). “Kinetically Driven Crystallization of a Pure Polymorphic Phase of Stearic Acid from CO2-Expanded Solutions”, Crystal Growth & Design, 10(3):1226-1232.
  91. Gallarate M., Battaglia L., Peira E., Trotta M., (2011). “Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique”, Int. J. Chem. Eng.,Article ID 132435, 1-6.
  92. Xu, R., (2002). “Particle characterization: light scattering method”, Kluwer Academic Publishers, ISBN-0-792-36300-0.
  93. Dubes A., Parrot-Lopez H., Abdelwahed W., Degobert G., Fessi H., Shahgaldian P., Coleman A.W., (2003). “Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins”, Eur. J. Pharm. Biopharm., 55(3): 279-82.
  94. Brescello R., Cotarca L., Smainiotto A., Verzini M., Polentarutti M., Bais M., (2012). “Method of detecting polymorphs using synchrotron radiation”, Patent WO2012156450.
  95. Souto  E. B., Mehnert W., Müller R. H., (2006). “Polymorphic behavior of Compritol 888 ATO as bulk lipid and as SLN and NLC”, J. Microencapsul., 23(4): 417-33.
  96. Mishra H., Mishra D., Mishra P.K., Nahar M., Dubey V., Jaina N. K., (2010). “Evaluation of solid lipid nanoparticles as carriers for delivery of hepatitis B surface antigen for vaccination using subcutaneous route”, J. Pharm.  Pharma. Sci. 13(4):495- 509.
  97. Jenning V., Thuenemann A., Gohla S., (2000). “Characterization of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids”, Int. J. Pharm., 199:167-177.
  98. Gomes G, Borrin T. R., Cardoso L. P., Souto E., Cristina de Pinho S., (2013). “Characterization and shelf life of b-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil”, Braz. Arch. Biol. Technol., 56(4): 663-671.
  99. Mulla J. A .S., Hiremath S.P., Sharma N. K., (2012). “Repaglinide loaded solid lipid nanoparticles: design and characterization”, R.G.U.H.S. J. Pharm. Sci. 2(4).