Elastic Properties and Fracture Analysis of Perfect and Boron-doped C2N-h2D Using Molecular Dynamics Simulation

Document Type : Research Paper

Authors

1 1Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, P.O.Box 3756, Rasht, Iran.

2 Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh, P.O.Box 83111-55181, Maragheh, Iran.

3 Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, P.O.Box 3756, Rasht, Iran.

Abstract

   This paper explores the mechanical properties and fracture analysis of C2N-h2D single-layer sheets using classical molecular dynamics (MD) simulations. Simulations are carried out based on the Tersoff potential energy function within Nose-Hoover thermostat algorithm at the constant room temperature in a canonical ensemble. The influences of boron (B) doping on the mechanical properties, i.e. Young’s and bulk moduli and ultimate strength and strain of C2N-h2D single-layer sheets are studied and the effects of size and doping percentage on the aforementioned properties are explored.  The results demonstrate lower strength and stiffness of C2N-h2D single-layer sheets compared to graphene. It is also demonstrated that unlike the strength of C2N-h2D single-layer sheet, the stiffness of C2N-h2D single-layer sheet is larger than that of silicene nanosheet. In addition, it is observed that doping of B atoms on C2N-h2D single-layer sheets intensely reduces the mechanical properties, whereas this reduction increases by rising the percentage of B-doping. Furthermore, the fracture process of C2N-h2D and B-doped C2N-h2D single-layer sheets is illustrated.

Keywords


  1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A., (2004). “Electric field effect in atomically thin carbon films”, Science, 306: 666–669.
  2. Lee, C., Wei, X., Kysar, J. W., Hone, J., (2004). “Measurement of elastic properties and instricnt strength  of monolayer graphene”, Science, 306: 385-388.
  3. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N., (2008). “Superior thermal conductivity of single-layer graphene ”, Nano Lett., 8: 902-907.
  4. Neto, A. H. C., Guinea, F., Peres, N. M., Novoselov, K. S., Geim, A. K., (2009). “The electronic properties of graphene”, Rev. Mod. Phys., 81: 109-162.
  5. Grigorenko, A. N., Polini, M., Novoselov, K. S., (2012). “Graphene plasmonics”, Nature Photonics, 6: 749-758.
  6. Zhang, Y., Tan, Y. W., Stormer, H. L., Kim, P., (2005). “Experimental observation of the quantum Hall effect and Berry's phase in graphene”, Nature, 438: 201-204.
  7. Novoselov, K. S., Geim, A. K, Morozov, S. V., Jiang, D., Katasnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A., (2005). “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438: 197-200.
  8. Azamat, J., (2018). “Application of Functionalized Graphene Oxide Nanosheet in Gas Separation”, International Journal of Nanoscience and Nanotechnology, 14(2): 165-175.
  9. Topsakal, M., Cahangirov, S., Ciraci, S., (2010). “The response of mechanical and electronic properties of graphane to the elastic strain”, Appl. Phys. Lett., 96: 091912.
  10. Ansari, R., Ajori, S., Motevalli, B., (2012). “Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation”, Superlattices Microstruct., 51: 274-289.
  11. Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F., (2011). “2D materials: to graphene and beyond”, Nanoscale, 3: 20-30.
  12. Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P. K., Wang, H., Guo, J., Dai, H., (2009). “N-doping of graphene through electrothermal reactions with ammonia”, Science, 324: 768-771.
  13. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G., (2009). “Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties”, Nano lett., 9: 1752-1758.
  14. Qu, L., Liu, Y., Baek, J. B., Dai, L., (2010). “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells”, ACS Nano, 4: 1321-1326.
  15. Wang, H., Zhang, C., Liu, Z., Wang, L., Han, P., Xu, H., Zhang, K., Dong, S., Yao, J., Cui, G., (2011). “Nitrogen-doped graphene nanosheets with excellent lithium storage properties”, J. Mater. Chem., 21: 5430-5434.
  16. Gutzler, R., erepichka, D. F., (2013). “π-Electron Conjugation in Two Dimensions”, J. Am. Chem. Soc., 135: 16585-16594.
  17. Mahmood, J., Lee, E. K., Jung, M., Shin, D., Jeon, I. Y., Jung, S. M., Choi, H. J., Seo, J. M., Bae, S. Y., Sohn, S. D., Park, N., Oh, J. H, Shin, H. J., Baek, J. B, (2015). “Nitrogenated holey two-dimensional structures”, Nat. Commun., 6: 6486.
  18. Xiao, J. R. , Staniszewski, J., Gillespie, J. W., (2009). “Fracture and progressive failure of defective graphene sheets and carbon nanotubes”, Compos. Struct., 88: 602-609.
  19. Xiao, J. R. , Staniszewski, J., Gillespie, J. W., (2010). “Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone–Wales defects”, Mater. Sci. Eng., A, 527: 715-723.
  20. Yanovsky, Y. G., Nikitina, E. A., Karnet, Y. N., Nikitin, S. M., (2010). “Simulation of deformation and fracture of graphene: effect of size, defects and surface modification”, Phys. Mesomech., 13: 329–336.
  21. Boukhvalov, D. W., Katsnelson, M. I., (2008). “Chemical Functionalization of Graphene with Defects” Nano Lett., 8: 4373-4379.
  22. Shao, Y. Y., Sui, J. H., Yin, G. P., Gao, Y. Z., (2008). “Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell”, Appl. Catal. B, 79: 89-99.
  23. Sumpter, B. G., Meunier, V., Romo-Herrera, J. M., Cruz-Silva, E., Cullen, D. A., Terrones, H., Smith, D. J., Terrones, M., (2007). “Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation”, ACS Nano, 1: 369-375.
  24. Lee, S. U., Belosludov, R.V., Mizuseki, H., Kawazoe, Y., (2009). “Designing Nanogadgetry for Nanoelectronic Devices with Nitrogen-Doped Capped Carbon Nanotubes”, Small, 5: 1769-1775.
  25. Jang, J. W., Lee, C. E., Lyu, S. C., Lee, T. J, Lee, C. J, (2004). “Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes”, Appl. Phys. Lett., 84: 2877-2879.
  26. Panchakarla, L. S., Govindaraj, A., Rao, C. N. R., (2007). “Nitrogen- and Boron-Doped Double-Walled Carbon Nanotubes” ACS Nano, 1: 494-500.
  27. Mortazavi, B. and Ahzi, S., (2012). “Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene.” Solid State Communications, 152(15): 1503-1507.
  28. Mortazavi, B., Ahzi, S., Toniazzo, V., Rémond, Y., (2012). “Nitrogen doping and vacancy effects on the mechanical properties of graphene: A molecular dynamics study” Phys. Lett. A, 378: 1146-1153.
  29. Mahmood, J., Lee, E.K., Jung, M., Shin, D., Jeon, I.Y., Jung, S.M., Choi, H.J., Seo, J.M., Bae, S.Y., Sohn, S.D. and Park, N., (2015). “Nitrogenated holey two-dimensional structures” Nature communications, 6: 6486.
  30. Yu, H.L., Jiang, X.F., Cai, M.Q., Feng, J.F., Chen, X.S., Yang, X.F. and Liu, Y.S., (2017). “Electronic and magnetic properties of zigzag C2N-h2D nanoribbons: Edge and width effects” Chemical Physics Letters, 685: 363-370.
  31. Guan, Z., Lian, C.S., Hu, S., Ni, S., Li, J. and Duan, W., (2017). “Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der waals heterostructure as photovoltaic material” The Journal of Physical Chemistry C, 121(6): 3654-3660.
  32. Zhang, R., Li, B. and Yang, J., (2015). “Effects of stacking order, layer number and external electric field on electronic structures of few-layer C 2 N-h 2D” Nanoscale, 7(33): 14062-14070.
  33. Yang, Y., Guo, M., Zhang, G. and Li, W., (2017). “Tuning the electronic and magnetic properties of porous graphene-like carbon nitride through 3d transition-metal doping”, Carbon, 117: 120-125.
  34. Tersoff, J., (1988). “New empirical approach for the structure and energy of covalent systems”, Phys. Rev. B., 37: 6991.
  35. Tersoff, J., (1989). “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Phys. Rev. B, 39: 5566.
  36. Kinaci, A., Haskins, J. B., Sevik, C., Cagin, T., (2012). “Thermal conductivity of BN-C nanostructures”, Phys. Rev. B, 86: 115410.
  37. Plimpton, S. J., (1995). “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, J Comp phys, 117: 1-19.
  38. Hoover, W. G., (1985). “Canonical dynamics: Equilibrium phase-space distributions” Physical Review A: 31: 1695.
  39. Allen, M.P., Tildesley, D.J., (1986). “Comput. Simulation Liquids”, New York,.
  40. Ansari, R., Rouhi, S., Ajori, S., (2013). “Elastic properties and large deformation of two-dimensional silicene nanosheets using molecular dynamics”, Superlattices Microstruct., 65: 64-70.