Synthesis of Silver, Chromium, Manganese, Tin and Iron Nano Particles by Different Techniques

Document Type: Research Paper

Authors

Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan

Abstract

    Nano technology has a large number of applications in different fields of science and technology. Nano particle are the tiny particles which are being used in upcoming technology due to their small size and high capability. The properties of nanoparticles depend largely on their synthesis procedures. There are different methods for the synthesis of nano particles using different conditions. In this review synthesis of five nano particles namely chromium, manganese, silver, iron and tin has been discussed. Possible methods of their preparation, conditions and properties are the main concern of this review. The results from various investigations performed by different scientists using some methods have been summarized. The applications, conveniences and difficulties of each synthesis method are also discussed in-detail. Applications of nano particles and metal oxide are also elaborated.

Keywords


1. Christian, P., Kammer, F. V., Baalousha, M., Hofmann, T. (2008). “Nanoparticles: structure, properties, preparation and behavior in environmental media,” Ecotoxicology, 17: 326-343.
2. Nagy, J.B. (1989). “Multinuclear NMR characterization of micro emulsions preparation of mono disperse colloidal metal boride particles,” Colloids Surface, 35: 201-220.
3. Feltin, N., Pileni, M.P. (1997). “New technique for synthesizing iron ferrite magnetic nano sized particles,” Langmuir, 13: 3927-3933.
4. Pileni, M.P., Motte, L., Petit, C. (1992). “Synthesis of cadmium sulfide in situ in reverse micelles: influence of the preparation modes on size, polydispersity, and photochemical reactions,” Chemistry of Materials, 4: 338-345.
5. Rao, C.N.R., Vivekchand, S.R.C., Biswas, K., Govindaraja, A. (2007). “Synthesis of inorganic nanomaterials,” Dalton Transactions, 34: 3728-3749.
6. Alivisatos, A.P. (1996). “Semiconductor Clusters, Nano crystals, and Quantum Dots,” Science, 271: 933-937.
7. Rogach, A.L., Talapin, D.V., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H. (2002). “Advanced Functional Materials,” Advance Functional Material, 12: 647-734.
8. Hyeon, T. (2003). “Chemical synthesis of magnetic nanoparticles,” Chemical Communications, 8: 927-934.
9. Zhou, J., Song, H., Chen, X., Zhi, L., Yang, S., Huo, J., Yang, W. (2009). “Carbon-Encapsulated Metal Oxide Hollow Nanoparticles and Metal Oxide Hollow Nanoparticles: A General Synthesis Strategy and Its Application to Lithium-Ion Batteries,” Chemistry of Material, 21: 2935-2940.
10. Yang, M., He, J., Hu. X., Yan, C., Cheng, Z., Zhao, Y., Zuo, G. (2011). “Copper oxide nanoparticle sensors for hydrogen cyanide detection: Unprecedented selectivity and sensitivity,” Surface and Interface Physics Papers A, 155: 692-698.
11. Bar, M.S., Haick, H. (2013). “Flexible Sensors Based on Nanoparticles”, ACS Nano, 7: 8366-3378.
12. Kuban, P., Berg, J.M., Dasgupta, P. K. (2004). “Durable micro fabricated high-speed humidity sensors,” Analytical Chemistry, 76: 2561-2567.
13. Sharma, S.S., Nomura, K., Ujihira, Y. (1991). “Characterization of tin oxide films prepared as gas sensors by conversion electron Mossbauer spectrometry”, Material Science, 26: 4104-4109.
14. Regan, B.O., Atzel, M.G. (1991). “A low-cost, high-efficiency solar Cell based on dye-sensitized colloidal O2 films”, Nature, 353: 737-740.
15. Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., Muhammad, M. (2001). “Characterization and MRI study of surfactant coated Super paramagnetic nanoparticles administered into the rat brain”, Magnetism and Magnetic Materials, 225: 256-261.
16. Pillai, V., Kumar, P., Hou, M.J., Ayyub, P., Shah, D.O. (1995). “Preparation of nanoparticles of silver halides, superconductors and magnetic materials uses water-in-oil microemulsions as nano-reactors”, Advance in colloid and Interface Science, 55: 241-269.
17. Bali, R., Razak, N., Lumb, A., Harris, A.T. (2006). “The synthesis of metal nanoparticles inside live plants”, International Conference Nano science and Nanotechnology, 3: 224-227.
18. Rodgers, P. (2006). “Nano electronics: Single File”, Nature Nano- technology, 5: 17-19.
19. Zhou, R., Wu, X., Hao, X., Zhou, F., Li, H., Rao, W. (2008). “Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation”, Nuclear Instruments and Methods in Physics Research; B, 266: 599-603.
20. Wu, S.H., Chen, D.H. (2004) “Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions”, Colloid Interface Science, 273: 165-169.
21. Lisiecki, I., Pileni, M.B., Am, J. (1993). “Synthesis of copper metallic clusters by using reverse micelles as micro reactors”, Chemical Society, 115: 3887-3896.
22. Tanori, J., Pileni, M. P. (1997). “Control of the Shape of Copper Metallic Particles by Using a Colloidal System as Template”, Langmuir, 13: 639-646.
23. Nikhil, J., Zhong, L.W., Tapan, K.S., Tarasankar, P. (2000). “Seed Mediated Growth Method to Prepare Cubic Copper Nanoparticles”, Current Science, 79: 1367-1370.
24. Panigrah, S., Kundu, S., Ghosh, S.K., Nath, S., Praharaj, S., Soumen, B., Pal, T. (2006). “Selective one-pot synthesis of copper nanorods under surfactant less condition”, Polyhedron, 25: 1263-1269.
25. Song, X., Zhang, W., Yin, Z. (2004). “A method for the synthesis of spherical copper nanoparticles in the organic phase”, Colloid Interface Science, 273: 463-469.
26. Zhong, C.J., Mott, D., Galkowski, J., Wang, L., Luo, J. (2007). “Synthesis of Size-Controlled and Shaped Copper Nanoparticles”, Langmuir, 23: 5740-5745.
27. Kapoor, S., Mukherjee, T. (2003). “Photochemical formation of copper nanoparticles in poly (N- vinylpyrrolidone)”, Chemical Physics Letters, 370: 83-87.
28. Huang, H.H., Yan, F.Q., Kek, Y.M., Chew, C.H., Xu, G.Q., Ji, W., Tang, S.H. (1997). “Synthesis, characterization, and nonlinear optical properties of copper nanoparticles”, Langmuir, 13: 172-175.
29. Lota, G., Frackowiak, E., Mittal, J., Monthioux, M. (2007). “High performance super capacitor from chromium oxide-nanotubes based electrodes”, Chemical Physics Letters, 434: 73-77.
30. Andersson, C., Zou, C., Yang, B., Gao, Y., Liu, J., Zhai, Q. (2008). “Recent Advances in the Synthesis of Lead-Free Solder Nanoparticle”, Process 2nd Electronics System-Integration Technology Conference (ESTC), Greenwich, 1: 915-922.
31. Zou, C.D., Gao, Y.L., Yang, B., Zhai, Q.J., Andersson, C., Liu, J. (2009). “Melting temperature depression of Sn-0.4 Co-0.7 Cu lead-free solder nanoparticles”, Soldering & Surface Mount Technology, 21: 9-13.
32. Gao, Y., Zou, C., Yang, B., Zhai, Q., Liu, J., Zhuravlev, E., Schick, C. (2009). “Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy”, Alloys and Compounds, 484: 777-781.
33. Zou, C.D., Gao, Y.L., Yang, B., Xia, X.Z., Zhai, Q.J., Andersson, C., Liu, J. (2009). “Nanoparticles of the lead-free solder alloy Sn-3.0 Ag-0.5 Cu with large melting temperature depression”, Electronic Materials, 38: 351-355.
34. Jiang, H., Moon, K., Dong, H., Hua, F., Wong, C.P. (2006). “Size dependent melting properties of tin nanoparticles”, Chemical Physics Letters, 429: 492-496.
35. Hsiao, L.Y., Duh, J.G. (2006). “Revealing the nucleation and growth mechanism of a novel solder developed from Sn-3.5Ag-0.5Cu nanoparticles by a chemical reduction method”, Electronic Materials, 35:1755-1760.
36. Jiang, H., Moon, K., Hua, F., Wong, C.P. (2007). “Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders”, Chemistry of Materials, 19: 4482-4485.
37. Rosemary, M.J., Pradeep, T. (2003). “Solvothermal synthesis of silver nanoparticles from thiolates”, Colloid and Interface Science, 268: 81-84.
38. Zhu, J.J., Liao, X.H., Zhao, X.N., Hen, H.Y. (2001). “Preparation of Silver Nanorods by Electrochemical Methods”, Materials Letters, 49: 91-95.
39. Liu, S., Huang, W., Chen, S., Avivi, S., Gedanken, A. (2001). “Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method,” Non-Crystalline Solids, 283: 231-236.
40. Soroushian, B., Lampre, I., Belloni, J., Mostafavi, M. (2005). “Radiolysis of silver ion solutions in ethylene glycol, solvated electron and radial scavenging yields”, Radiation Physics and Chemistry, 72: 111-118.
41. Starowicz, M., Stypula, B., Banaoe, J. (2006). “Electrochemical Method for the Synthesis of Silver Nanoparticles”, Electrochemistry Communications, 8: 227-230.
42. Xin, Y., Ye, R., Liu, H. (2006). “Synthesis of silver nanoparticles in reverse micelles stabilized by natural bio surfactant”, Colloids and Surfaces, 279: 175-178.
43. Shahverdi, R., Fakhimi, A., Shahverdi, H.R., Minaian, M.S. (2007). “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli”, Nonomedicine, 3: 168-171.
44. Barichello, J.M., Morishita, M., Takayama, K., Nagai, T. (1999). “Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the Nano precipitation method”, Drug Development and Industrial Pharmacy, 25: 471-476.
45. Rodriguez, S.G., Allemann, E., Fessi, H., Doelker, E. (2004). “Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and Nano precipitation methods”, Pharmistic Research, 21: 1428-1439.
46. Ganachaud, F., Katz, J.L. (2005). “Nanoparticles and Nano capsules created using the ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices”, ChemPhysChem, 6: 209- 216.
47. Cansell, F., Chevalier, B., Demourgues, A., Etourneau, J., Even, C., Garrabos, Y., Pessey, V. (1999). “Supercritical fluid processing: a new route for materials synthesis”, Materials Chemistry, 9: 67-75.
48. Komarneni, S., Li, Q., Stefansson, K.M., Roy, R. (1993). “Microwave-Hydrothermal Processing for Synthesis of Electro ceramic Powders,” Materials research, 8: 3176-3183.
49. Sovetskaja, M., (1998). “Hydrothermal processes”, Chemical Encyclopedia, 1: 567-570.
50. Hiratsuka, R.S., Snatilli, C.V., Silva, D.V., Pulcinelli, S.H. (1992). “Effect of electrolyte on the gelation and aggregation of SnO2 colloidal suspensions”, Non-crystalline Solids, 147/148: 67-73.
51. Goodman, J.F., Gregg, S.J. (1960). “The production of active solids by thermal decomposition. Part XI. The heat treatment of precipitated stannic oxide”, Chemical Society, 237: 1162-1167.
52. Bonde, S.R., Rathod, D.P., Ingle, A.P., Ade, R.B., Gade, A.K., Rai, M. K. (2012). “Murraya koenigii-mediated synthesis of silvernanoparticles and its activity against three humanpathogenic bacteria”, Nano Science Methods, 1: 25-36.
53. Kavitha, K. S., Baker, S., Rakshith, D., Kavitha, H.U., Harini, B.P., Satish, S. (2013). “Plants as Green Source towards Synthesis of Nanoparticles”, International Research Journal of Biological Science, 2: 66-67.
54. Zhang, D.E., Ni, X.M., Zheng, H.G., Li, Y., Zhang, X.J., Yang, Z.P. (2005). “Synthesis of needlelike nickel nanoparticles in water-in-oil microemulsion”, Material Letter, 59: 2011-2014.
55. Tavakoli, A., Sohrabi, M., Kargari, A. (2007). “A review of methods for synthesis of nanostructured metals with emphasis on iron compounds”, chemical papers, 61: 151-170.
56. Husein, M., Rodil, E., Vera, J.H. (2003). “Formation of silver chloride nanoparticles in microemulsions by direct precipitation with the surfactant counterion”, Langmuir, 19: 8467-8474.
57. Husein, M., Rodil, E., Vera, J.H. (2004). “Formation of silver bromide precipitate of nanoparticles in a single micro emulsion utilizing the surfactant counterion”, Colloid Interface Science, 273: 426-434.
58. Sun, Y., Xia, Y. (2002). “Large-Scale Synthesis of Uniform Silver Nanowires through a Soft, Self-Seeding, Polyol Process”, Advance Materials, 14: 833-837.
59. Lin, J.C., Wang, C.Y. (1996). “Effects of surfactant treatment of silver powder on the rheologie of its thick film past”, Materials Chemistry and Physics, 45: 136-144.
60. Wang, Y., Toshima, N. (1997). “Preparation of Pd−Pt Bimetallic Colloids with Controllable Core/Shell Structures”, Physical Chemistry, B 101: 5301-5306.
61. Chou, K., Ren, C.Y. (2000). “Synthesis of Nano sized silver particles by chemical reduction method”, Materials Chemistry and Physics, 64: 241-246.
62. Vorobyova, S.A., Lesnikovich, A.I., Sobal, N.S. (1999). Reduction colloids, Colloids surface, 152: 375-379.
63. Yin, H., Yamamoto, T., Wada, Y., Yanagida, S. (2004). “Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation,” Materials chemistry and Physics, 83: 66-70.
64. Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S. (2002). “Shape effects in Plasmon resonance of individual colloidal silver nanoparticles,” Chemistry and Physics, 116: 6755-6759.
65. Zhu, J.J., Liao, X.H., Zhao, X.N., Hen, H.Y. (2001). “Preparation of Silver Nanorods by Electrochemical Methods”, Materials Letters, 49: 91-95.
66. Zhu, Z., Kai, L., Wang, Y. (2006). “Synthesis and applications of hyper branched polyesters-preparation and characterization of crystalline silver nanoparticles”, Materials Chemistry and Physics, 96: 447-453.
67. Duran, N., Marcato, P.L., Alves, O.L., De-Souza, G.I. (2005). “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains”, Nano biotechnology, 3: 1-7.
68. Maillard, M., Giorgo, S., Pileni, M.P. (2002). “Silver Nano disks”, Advance Materials, 14: 1084-1086.
69. Chou, W.L., Yu, D.G., Yang, M.C. (2005). “The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment”, Polymers for Advanced Technologies, 16: 600-608.
70. Shahverdi, R., Fakhimi, A., Shahverdi, H.R., Minaian, M.S. (2007). “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli”, Nonomedicine, 3: 168-171.
71. Pacios, R., Marcilla, R., Gonzalo, C.P., Pomposo, J.A., Grande, H., Aizpurua, J., Mecerreyes, D.J. (2007). “Combined electrochromic and plasmonic optical responses in conducting polymer/metal nanoparticle films”, Nanoscience and Nanotechnology, 7: 2938-2941.
72. Mazur, M. (2004). “Electrochemically prepared silver nano flakes and nanowires”, Electrochemistry Communications, 6:400-403.
73. Jian, Z., Xiang, Z., Yongchang, W. (2005). “Electrochemical synthesis and fluorescence spectrum properties of silver Nano spheres”, Mictoelectronic Engineering, 77: 58-62.
74. Kim, Y.H., Lee, D.K., Kang, Y.S. (2005). “Synthesis and characterization of Ag and Ag–SiO2 nanoparticles”, Colloids and Surfaces, A 273: 257–258.
75. Bae, C.H., Nam, S.H., Park, S.M. (2002). “Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution”, Applied Surface Science, 628: 197–198.
76. Patel, K., Kapoor, S., Dave, D.P., Mukherjee, T. (2007). “Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method”, Chemical Science, 117: 311-315.
77. Zhang, J., Chen, P., Sun, C., Hu, X. (2004). “Sonochemical Synthesis of Colloidal Silver Catalysts for Reduction of Complexing Silver in DTR System”, Applied Catalysis, A 266: 49-54.
78. Chaudhari, V.R., Haram, S.K., Kulshreshtha, S.K. (2007). “Micelle Assisted Morphological Evolution of silver nanoparticles”, Colloids and Surfaces, A 301: 475-480.
79. Guzman, M.G., dille, J., godet, S. (2009). “Synthesis of silver nanoparticles by chemical Reduction method and their antibacterial activity”, International Journal of Chemical and Bimolecular Engineering, 2: 104-111.
80. Khanna, P.K., Singh, N., Charan, S., Subbarao, V.V.V.S., Gokhale, R., Mulik, U.P. (2005). “Synthesis and characterization of ag/pva nanocomposite by chemical reduction method”, Materials chemistry and physics, 93: 117-121.
81. Wanga, H., Qiaoa, X., Chena, J., Dingb, S. (2005). “Preparation of silver nanoparticles by chemical reduction method”, colloids and surfaces; A, 256: 111-115.
82. Ghorbani, H.R. (2014). “Nano-silver colloidal solution formation by a simple and green method”, Oriental journal of chemistry, 30: 1417-1419.
83. Banerjee, P., Satapathy, M., Mukhopahayay, A., Das, P. (2014). “Leaf extract mediated green synthesis of silver Nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis”, Bioresources and Bioprocessing, 1: 1-10.
84. Rout, Y., Behera, S., Ojha, A.K., Nayak, P.L. (2012). “Green synthesis of silver nanoparticles using Ocimum sanctum (tulashi) and study of their antibacterial and antifungal activities”, Microbiology and antimicrobials, 4: 103-109.
85. Awwad, M., Salem, N.M., Abdeen, A.O. (2013). “Green synthesis of silver nanoparticles using Carob leaf extract and its antibacterial activity”, Industrial chemistry, 4: 1-6.
86. Wu, P.W., Dunn, B. (2000). “Controlling the spontaneous precipitation of silver nanoparticles in sol-gel materials”, Sol-gel Science and Technology, 19: 249-252.
87. Pham, D.P., Huynh, K.K., Tran, C.V., Vu, V.Q., Tran, T.T.V. (2014). “Preparation and structural characterization of Sol-gel-derived silver silica nano composite powders”, Materials science and applications, 3: 147-151.
88. Sigal, K., kienskaya, K., Ilyushenko, E., Kuzovkova, A., Nazarov, V. (2010). “Optimization of the silver nanoparticles Synthesis in reverse micelles via phase equilibria”, Ars separatoria – Torun Poland, 25: 99-102.
89. Dung, T.T.N., Buu, N.Q., Quang, D.V., Ha, H.T., Bang, L.A., Chau, N.H., Ly, N.T., Trung, N.V. (2009). “Synthesis of nanosilver particles by reverse micelle method and study of their bactericidal properties”, Physics: Conference Series, 187: 12054-12063.
90. Hossaina, S., Fatema, U.K., Mollaha, M.D.Y.A., Rahman, M.M., Susan, M.A.H. (2012). “Microemulsions as nanoreactors for preparation of Nanoparticles with antibacterial activity”, Bangladesh chemical society, 25: 71-79.
91. Solanki, J.N., Murthy, Z.V.P. (2010). “Highly monodisperse and sub-nano silver particles synthesis via micro emulsion technique”, Colloids and Surfaces; A, 359: 31-38.
92. Yang, X., Peng, X., Xu, C., Wang, F. (2009). “Electrochemical Assembly of Ni – xCr – yAl Nano composites with Excellent High-Temperature Oxidation Resistance”, Electrochemical Society, 156: 167-175.
93. Li, C.L., Zhao, H.X., Takahashi, T., Matsumura, M. (2001). “Improvement of corrosion resistance of materials coated with a Cr2O3/NiCr di layer using a sealing treatmen”, Materials Science Engineering; A, 308: 268-276.
94. Hwang, J.Y., Seo, D.S. (2010). “Liquid Crystal Alignment at Low Temperatures in Flexible Liquid Crystal Displays”, Electrochemical Society, 157: J351-J357.
95. Freemantle, M. (1998). “Ionic liquids may boost clean technology development”, Chemical and Engineering News Archive, 79: 32-37.
96. Jeffry, F., Ning, L., Daniel, D. (1999). “Spectral Tuning in the Human Blue Cone Pigment”, Biochemistry, 38: 11593-11596.
97. Rotter, H., Landau, M.V., Carrera, M., Goldfarb, D., Herskowitz, M. (2004). “High surface area chromia aerogel efficient catalyst and catalyst support for ethyl acetate combustion”, Applied Catalysis; B, 47: 111-126.
98. Rotter, H., Landau, M.V., Herskowitz, M. (2005). “Combustion of Chlorinated VOC on Nanostructured chromia Aerogel as Catalyst and Catalyst Support”, Environmental Science and Technology, 39: 6845-6850.
99. Vijay, R., Sundaresan, R., Maiya, M.P., Murthy, S.S. (2006). “Hydrogen storage properties of Mg-Cr2O3 nano composites: The role of catalyst distribution and grain size”, Alloys and Compounds, 424: 289-293.
100. Patah, Takasaki, A., Szmyd, A.S. (2009). “Influence of multiple oxide (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2”, Hydrogen Energy, 34: 3032-3037.
101. Stanoiu, Simion, C.E., Diamandescu, L., Mihaila, D.T., Feder, M. (2012). “NO2 Sensing properties of Cr2O3 highlighted by work function investigations”, Thin Solid Films, 522: 395-400.
102. Chen, L., Song, Z., Wang, X., Prikhodko, S.V., Hu, J., Kodambaka, S., Richards, R. (2009). “Three-dimensional morphology control during wet chemical synthesis of porous chromium oxide spheres”, Applied Materials and Interfaces, 1:1931-1937.
103. Bai, Y.L., Xu, H.B., Zhang, Y., Li, Z.H. (2006). “Reductive conversion of hexavalent chromium in the preparation of ultra-fine chromia powder”, Physics and Chemistry of Solids, 67: 2589-2595.
104. Santulli, C., Feygenson, M., Camino, F.E., Aronson, M.C., Wong, S.S. (2011). “Synthesis and Characterization of one-Dimensional Cr2O3 Nanostructures”, Chemistry of Materials, 23: 1000-1008.
105. Lota, G., Frackowiak, E., Mittal, J., Monthioux, M. (2007). “High performance super capacitor from chromium oxide-nanotubes based electrodes”, Chemical Physics Letters, 434: 73-77.
106. Crzybowska, Sloczynski, J., Grabowski, R., Wcislo, K., Kozlowska, K., Stoch, J. (1998). “Chromium Oxide/Alumina Catalysts in Oxidative Dehydrogenation of Isobutane”, Catalysis, 178: 687-700.
107. Wu, P.W., Dunn, B., Doan, V., Schwartz, B.J., Yablonovitch, E., Yamane, M. (2000). “Controlling the spontaneous precipitation of silver nanoparticles in sol-gel materials”, Sol-Gel Science and Technology, 19: 249-252.
108. Kim, W., Shin, S.I., Lee, J.D., Oh, S.G. (2004). “Preparation of chromia nanoparticles by precipitation–gelation reaction”, Materials Letters, 58: 1894-1898.
109. El-Sheikh, S.M., Mohamed, R.M., Fouad, O.A. (2009). “Synthesis and structure screening of nanostructured chromium oxide powders”, Alloys and Compounds, 482: 302-307.
110. Nakanishi, K., Tanaka, N. (2007). “Sol–Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance Liquid Chromatography Separations”, Accounts of Chemical Research, 40: 863-873.
111. Alrehaily, L.M., Joseph, J.M., Musa, A.Y., Guzonas, D.A., Wren, J. C. (2013). “Gamma-radiation induced formation of chromium oxide nanoparticles from dissolved dichromate”, Physical chemical Chemistry Physics, 15: 98-107.
112. Ma, Z., Xiao, Z., Bokhoven, J.A.V., Liang, C. (2010). “A non-alkoxide sol–gel route to highly active and selective Cu–Cr catalysts for glycerol conversion”, Materials Chemistry, 20: 755-760.
113. Karunakaran, B., SakthiRaadha, S., Gomathisankar, P., Vinayagamoorthy, P. (2013). “Nanostructures and optical, electrical, magnetic, and photocatalytic properties of hydrothermally and sonochemically prepared CuFe2O4/SnO2”, RSC Advances, 3: 16728-16738.
114. Ritu, D. (2015). “Synthesis and Characterization of Chromium Oxide Nanoparticles” IOSR Journal of Applied Chemistry, 8: 5-11.
115. Jaswal, V.S., Arora, A.K., Kinger, M., Gupta, V.D., Singh, J. (2014). “Synthesis and Characterization of Chromium Oxide Nanoparticles”, Oriental Journal of Chemistry, 30: 559-566.
116. Kohli, N., Singh, O., Singh, M.P., Singh, R.C. (2012). “Fabrication of LPG Sensors Based upon Chemically Tailored Sizes of Chromium Oxide Nanoparticles”, Int. Meeting on Chemical Sensors, 1: 1012-1015.
117. Meenambika, R., Ramalingom, R., Thanu, T.C. (2014). “Structural and Morphological Properties of Cr2O3 Nanoparticles Synthesized By Novel Solvent Free Method”, Engineering Research and Applications, 4: 20-23.
118. Willis, A.L., Chen, Z., He, J., Zhu, Y., Turro, N., Brien, S. (2007). “Metal Acetylacetonates as General Precursors for The Synthesis of Early transition metal Oxide Nanomaterials”, Nanomaterials, 1:1-7.
119. Praserthdam, P., Phungphadung, J., Tanakulrungsank, W. (2003). “Effect of crystallite size and calcination temperature on the thermal stability of single nanocrystalline chromium oxide: expressed by novel correlation”, Material research Innovat, 7: 118-123.
120. Yang, J., Tao, Q., Frost, R.L., Kristof, J., Horvath, E. “Studies on self-assembly hydrothermal fabrication and thermal stability of chromium oxyhydroxide nano materials synthesized from chromium oxide colloids”, Thermal Analysis and Calorimetr, 111: 329-334.
121. Pei, Z., Xua, H., Zhang, Y. (2009). “Preparation of Cr2O3 nanoparticles via C2H5OH hydrothermal reduction”, Alloys and Compounds, 468: L5–L8.
122. Gunnewiek, R.F.K., Mendes, C., Kiminami, R. (2014). “Synthesis of Cr2O3 nanoparticles via thermal decomposition of polyacrylate/chromium complex”, Materials Letters, 129: 54-56.
123. Gibot P., Vidal, L. (2010). “Original synthesis of chromium (III) oxide nanoparticles”, European Ceramic Society, 30: 911-915.
124. Chen, Y., Hong, Y., Ma, Y., Li, J. (2010). “Synthesis and formation mechanism of urchin-like nano/micro-hybrid α-MnO2”, Alloys and Compounds, 490: 331-335.
125. Wang, X., Li, Y. (2002). “Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires”, American Chemical Society, 124: 2880-2881.
126. Armstrong, A.R., Bruce, P.G. (1996). “Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries”, Nature, 381: 499-500.
127. Bernard, M. C., Hugot‐Le Goff, A., Thi, B. V., & de Torresi, S. C. (1993). “Electrochromic reactions in manganese oxides I. Raman analysis”, Journal of the Electrochemical Society, 140(11), 3065-3070.
128. Vries, A.H.D., Hozoi, L., Bagus, P.S., Broer, R. (2002). “Importance of Interatomic hole Screening in Core-Level Spectroscopy of Transition Metal Oxides: Mn 3s-Hole States in MnO”, Physical Review; B, 66: 35108-35116.
129. Yamashita, Y., Mukai, K., Yoshinobu, J., Lippmaa, M., Kinoshita, T., & Kawasaki, M. (2002). “Chemical nature of nanostructures of La 0.6 Sr 0.4 MnO3 on SrTiO3 (100)”, Surface science, 514(1), 54-59.
130. Li, J., Wang, Y. J., Zou, B. S., Wu, X. C., Lin, J. G., Guo, L., & Li, Q. S. (1997). “Magnetic properties of nanostructured Mn oxide particles”, Applied physics letters, 70(22), 3047-3049.
131. Cao, J., Mao, Q.H., Shi, L., Qian, Y.T. (2011). “Fabrication of γ-MnO2/α-MnO2/ hollow core/shell structures and their application to water treatment”, Materials Chemistry, 21: 16210-16215.
132. Yan, D., Cheng, S., Zhuo, R. F., Chen, J. T., Feng, J. J., Feng, H. T., Yan, P. X. (2009). “Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties”, Nanotechnology, 20: 105706-105710.
133. Cheng, B.Y., Zhao, J.Z., Song, W. (2006). “Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries”, Inorganic Chemistry, 45: 2038-2044.
134. Cheng, B.Y., Shen, J.A., Peng, B., Pan, Y.D., Tao, Z.L., Chen, J. (2011). “Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts”, Nature Chemistry, 3: 79-84.
135. Sun, B., Chen, Z.X., Kim, H.S., Ahn, H., Wang, G.X. (2011). “MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries”, Power Sources, 196: 3346-3349.
136. Ching, S., Roark, J.L., Duan, N., Suib, S.L. (1997). “A Sol-Gel Route to the Tunneled Manganese Oxide Cryptomelane”, Chemistry of Materials, 9: 750-754.
137. Askarinejad, Morsali, A. (2009). “Direct ultrasonic-assisted synthesis of sphere-like Nanocrystal of spinel Co3O4 and Mn3O4”, Ultrasonic Sonochemistry, 16: 124-131.
138. Ozkaya, T., Baykal, A., Kavas, H., Koseoglu, Y., Toprak, M. (2008). “A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation”, Physica B: Condensed Matter, 403: 3760-3764.
139. Finocchio, E., Busca. G. (2001). “Characterization and hydrocarbon oxidation activity of co precipitated mixed oxides Mn3O4/Al2O3”, Catalysis Today, 70: 213-225.
140. Chang, Z.Y., Qiao, T., Hu, X.Y. (2004). “Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires”, Solid State Chemistry, 177: 4093-4097.
141. Chang, Y. Q., Xu, X. Y., Luo, X. H., Chen, C. P., & Yu, D. P. (2004). “Synthesis and characterization of Mn3O4 nanoparticles”, Journal of crystal growth, 264(1), 232-236.
142. Chen, Z.W., Lai, J., Shek, C.H. (2006). “Shape-controlled synthesis and nanostructure evolution of single-crystal Mn3O4 Nano crystals”, Scripta Materialia, 55: 735-738.
143. Moon, J., Awano, M., Takai, H., Fujishiro, Y. (1999). “Synthesis of nanocrystalline manganese oxide powders: Influence of hydrogen peroxide on particle characteristics”, Material Research, 14: 4594-4601.
144. Bakal, A., Koseoglu, Y., Şenel, M. (2007). “Low temperature synthesis and characterization of Mn3O4 nanoparticles”, Central European Journal of Chemistry, 5(1), 169-176.
145. Ozkaya, T. (2008). “Synthesis and magnetic characterization of magnetic nanoparticles”, Master Thesis, Fatih University, Istanbul, pp: 1-3.
146. Yang, P. Lieber, C.M. (1996). “Nano rod-superconductor composites: A pathway to high critical current density materials”, Lieber Science, 273: 1836-1840.
147. Choudary, B.M., Kantam, M.L., Ranganath, K.V.S., Mahender, K., Sreedhar, B. (2004). “Bi functional nanocrystalline Mgo for chiral epoxy ketones via Claisen-Schmidt condensation-asymmetric epoxidation reactions”, American Chemical Society, 126: 3396-3397.
148. Durmusa, Z., Kavasb, H., Baykala, A., Toprakc, M. (2009). “A green chemical route for the synthesis of Mn3O4 nanoparticles”, Central European Journal of Chemistry, 7: 555-559.
149. Balan, L., Ghimbeu, C.M., Vidal, L., Guterl, C.V. (2013). “Synthesis of manganese oxide nanostructures using visible light at room temperature”, Green Chemistry, 15: 2191-2199.
150. Veeramani, H., Aruguete, D., Monsegue, N., Murayama, M., Dippon, U., Kappler, A., Hochella, M.F. (2013). “Low-Temperature Green Synthesis of Multivalent Manganese Oxide Nanowires”, ACS Sustainable Chemistry and Engineering, 1: 1070-1074.
151. Kumar, H., Manisha. Sangwan, P. (2013). “Synthesis and Characterization of MnO2 Nanoparticles Using Co-precipitation Technique”, Chemistry and Chemical Engineering, 3: 155-160.
152. Vijayalakshmi, S. Pauline, S. (2014). “Synthesis, “Structural and Morphological Characterization of CTAB- Mn3O4 by CO Precipitation Method”, ChemTech Research, 6: 3813-3815.
153. Baykal, A., Koseoglu, Y., Senel, M. (2007). “Low temperature synthesis and characterization of Mn3O4 nano particles”, central European journal of chemistry, 5: 169-176.
154. Song, Z. Q., Wang, s., Yang, W., Li, M., Wang, H., Yan, H. (2004). “Synthesis of manganese titanate MnTiO3 powders by a sol–gel–hydrothermal method”, Materials Science and Engineering, 113: 121–124
155. Falahatgar, S. S., Ghodsi, F. E. (2016). Annealing Temperature Effects on the Optical Properties of MnO2: Cu Nanostructured Thin Films”, Int. J. Nanosci. Nanotechnol, 12: 7-18
156. T.F. Kuznetsova, V.G. Prozorovich, (2015), “Sol-gel synthesis and adsorption properties of mesoporous manganese oxide”, Zhurnal Fizicheskoi Khimii, 89: 480–485.
157. Swetha, B.A., Geetha, A. (2014). “Synthesis and characterization of nickel oxide, manganese oxide nanoparticles and NiO/MnO Nano composite: hydrothermal approach”, ChemTech Research, 7: 2138-2143.
158. Feng, Q., Yanagisawa, K., Yamasaki, N. (1998). “Hydrothermal Soft Chemical Process for Synthesis of Manganese Oxides with Tunnel Structures”, Porous Materials, 5: 153-161.
159. Kim, C., Noh, M., Choi, M., Cho J., Park, B. (2005). “Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery”, Chemical Materials, 17: 3297-3301.
160. Ono, T., Yamanaka, T., Kubokawa, Y., Komiyama, M. (1998). “Structure and Catalytic Activity of Sb Oxide Highly Dispersed on SnO2 for Propene Oxidation”, Catalysis, 109: 423-432.
161. Wierzchowski, P.T., Zatorski, L.W. (2003). “Kinetics of catalytic oxidation of carbon monoxide and methane combustion over alumina supported Ga2O3, SnO2 or V2O5”, Applied Catalysis B: Environmental, 44: 53-65.
162. Naje, A.N., Norry, A.S., Suhail, A.M. (2013). “Preparation and Characterization of SnO2 Nanoparticles”, Innovative Research in Science, Engineering and Technology, 2: 7068-7072.
163. Banisharif, A., Elahi, S. H., Firooz, A. A., Khodadadi, A. A., Mortazavi, Y. (2013). “TiO2/Fe3O4 Nanocomposite Photo catalysts for Enhanced Photo-Decolorization of Congo Red Dye”, Int. J. Nanosci. Nanotechnol, 9: 193-202
164. Nehru, L.C., Swaminathan, V., Sanjeeviraja, C. (2012). “Nanocrystalline Tin Oxide”, Materials Science, 2: 6-10.
165. Ahmadi, Z., Afshar, S., Vafaee, L., Salehi, A. (2008). “Photocatalytic degradation of E. coli bacteria using TiO2/SiO2 nanoparticles with photo deposited platinum”, Int. J. Nanosci. Nanotechnol, 4:39-47.
166. Taib, H., Sorrell, C.C. (2007). “Preparation of Tin Oxide”, Australian Ceramic Society 43: 56-61.
167. Adnan, R., Razana, N. A., Rahman, I. A., & Farrukh, M. A. (2010). “Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Sol‐Gel Method as a Catalyst for the Hydrogenation of Styrene”, Journal of the Chinese Chemical Society, 57(2), 222-229.
168. Aziz, M., Abbas, S.S., Baharom, W.R.W. (2012). “Size controlled synthesis of SnO2 nano particles by sol gel method”, Material Letters, 91: 31-34.
169. Zhang, G., Liu, M. (1999). “Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol”, Materials science, 34: 3213-3219.
170. Kamaraj, P., Vennila, R., Arthanareeswari, M., Devikala, S. (2014). “Biological Activities Of Tin Oxide Nanoparticles Synthesized Using Plant Extract”, Pharmacy And Pharmaceutical Science, 3: 382-338.
171. Sudhaparimala, S., Gnanamani, A., Mandal, A.B. (2014). “Green synthesis of tin based nano medicine: Assessment of microstructure and surface property”, American Journal of Nanoscience and Nanotechnology, 2: 75-83.
172. Fu, L., Zheng, Y., Ren, Q., Wang, A., Deng, B. (2015). “Green biosynthesis 0f SnO2 nanoparticles by Plectranthus Amboinicus leaf extract”, Ovonic Research, 11: 21-26.
173. Blessi, S., Maria, M., Sonia, L., Vijayalakshmi, S., Pauline, S. (2014). “Preparation and characterization of SnO2 nanoparticles by hydrothermal method”, ChemTech Research, 6: 2153-2155.
174. Farrukh, M.A., Heng, B.T., Adnan, R. (2012). “Surfactant-controlled aqueous synthesis of SnO2 nanoparticles via the hydrothermal and conventional heating methods”, Turkish Journal of Chemistry, 34: 537-550.
175. Tan, L., Wang, L., Wang, Y. (2011). “Hydrothermal Synthesis of SnO2 nanostructures with different morphologies and their optical properties”, Nanomaterials, 2: 1-10.
176. Ribeiro, C., Lee, E.J.H., Giraldi, T.R., Longo, E., Varela, J.A., Leite, E.R. (2004). “Study of Synthesis Variables in the Nanocrystal Growth Behavior of Tin Oxide Processed by Controlled Hydrolysis”, Physical Chemistry B, 108: 15612-15617.
177. Chee, S.S., Lee, J.H. (2012). “Reduction Synthesis of Tin Nanoparticles Using Various Precursors and Melting Behavior”, Electronic Materials Letters, 8: 587-593.
178. Babes, L., Denizot, B., Tanguy, G., Jeune, J.J.L., Jallet, P. (1999). “Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study”, Colloid Interface Science, 212: 474-482.
179. Hua, J., Qing, Y.H. (2008). “Controlled synthesis and magnetic properties of Fe3O4 walnut spherical particles and octahedral microcrystals”, Science in China, Series E: Technological Sciences, 51: 1911-1920.
180. Nassar, N., Husein, M. (2006). “Preparation of iron oxide nanoparticles From Fecl3 solid powder using microemulsions”, Physica Status Solidi, 203: 1324-1328.
181. Yunxia, Z., Tielong, L., Zhaohui, J., Wei, W., Shuaima, W. (2007). “Synthesis of nano iron by micro emulsion with Span/Tween as mixed surfactants for reduction of nitrate in water”, Frontiers of Environmental Science and Engineering, 1: 466-470.
182. Dozier, D., Palchoudhury, S., Bao, Y. (2010). “Synthesis of Iron Oxide Nanoparticles with Biological Coatings”, Joshua, 7: 16-18.
183. Hariani, P.L., Faizal, M., Ridwan. Marsi., Setiabudidaya, D. (2013). “Synthesis and properties of Fe3O4 nanoparticles by Co-precipitation method to removal procion dye”, Environmental Science and Development, 16: 336-340.
184. Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A. (2007). “Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route”, Magnetism and Magnetic Materials, 308: 289-406.
185. Rahman, M.M., Khan, S.B., Jamal, A., Faisal, M., Asiri, A.M., Alamry, K.A., Khan, A., Khan, A.A.P., Rub, M.A., Azum, N., Al-Youbi, A.O. (2013). “Large-scale Synthesis of Low-dimension Un-doped Iron Oxide Nanoparticles by a Wet-Chemical Method: Efficient Photo-catalyst & Sensitive Chemi-sensor Applications”, Micro and Nano systems, 5: 3-13.
186. Chaki, S.H., Malek, T.J., Chaudhary, M.D., Tailor J.P., Deshpande, M.P. (2015). “Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization”, Advances in Natural Sciences: Nanoscience and Nanotechnology, 6: 35009-35015.
187. Paul, A.M., Aarthi, G., Krishna, P.R., Sakthivel, P., Thilagarajw, R. (2013). “Green synthesis of alginate encapsulated iron nanoparticles for decolorization of dye”, Emerging Technology and Advanced Engineering, 3: 256-260.
188. Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014). “Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication”, Saudi Chemical Society, 18: 364-369.
189. Balamurughan, M.G., Mohanraj, S., Kodhaiyolii, S., Pugalenthi, V. (2014). “Ocimum sanctum leaf extract mediated green synthesis of iron oxide nanoparticles: spectroscopic and microscopic studies”, Chemical and Pharmaceutical Sciences, 4: 201-204.