Effect of Functionalization Process on Thermal Conductivity of Graphene Nanofluids

Document Type: Research Paper

Authors

1 Faculty member of Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box: 14665-137, Tehran, Iran

2 Transport Phenomena & Nanotech. Lab (TPNT), School of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran

Abstract

   In this research, Graphene was synthesized by chemical vapor deposition (CVD) method in atmosphere pressure (14.7 psi). Different functionalization method was used for oxidizing of graphene such as acid and alkaline treatments. The Functionalized graphene (FG) was characterized by FTIR and Raman spectroscopy. Nanofluid with water and different concentration (0.05, 0.15 and 0.25 wt %) of FG were prepared. Thermal conductivity of nanofluids was measured by transient hot wire method. The acid functionalization introduces significant defects in graphene structure, degrading its unique properties such as superior carrier mobility, mechanical strength and chemical stability. In alkali functionalization method, the graphene is not effectively defected. Therefore, the transport properties of graphene maintained and this method showed enhancement in thermal conductivity more than acid fictionalization in same conditions. In optimum condition (0.25 wt % graphene of alkaline method in water), thermal conductivity ratio were increased (24.4% at 20°C and 33.9% at 60°C).

Keywords


  1. Li J., Kleinstreuer C., (2008). “Thermal performance of nanofluid flow in micro channels”, International Journal of Heat and Fluid Flow, 29(4): 1221–1232.
  2. Safi M.A., Ghozatloo A., Hamidi A.A., Shariaty-Niassar M., (2014).“Calculation of Heat Transfer Coefficient of MWCNT-TiO2 Nanofluid in Plate Heat Exchanger”, Int. J. Nanosci. Nanotechnol., 10(3): 153-162.
  3. Masuda H., Ebata A., Teramae K., Hishinuma N., (1993). “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles)”, Netsu Bussei, 7(4): 227–233.
  4. Eastman J.A., Choi U.S., Li S., Thompson L.J., Lee S., (1997). “Enhanced thermal conductivity through the development of nanofluids”, In Nanophase and Nanocomposite Materials II. Materials Research Society.
  5. Teng T.P., Hung Y.H., Teng T.C., Mo H.E., Hsu H.G., (2010). “The Effect of Alumina/Water Nanofuid Particle Size on Thermal Conductivity”, Applied Thermal Engineering, 30: 2213-2218.
  6. Nasiri A., Shariaty-Niasar M., Morad Rashidi A., Amrollahi A., Khodafarin R., (2012). “Effect of CNT structures on thermal conductivity and stability of nanofluid”, International Journal of Heat and Mass Transfer, 55(5): 1529-1535.
  7. Li Y., Zhou J., Tung S., Schneider E., Xi S., (2009). “A review on development of nanofluid preparation and characterization”, Power Technology, 196(2): 89-101.
  8. Wei Y., Huaqing X., Dan B., (2010). “Enhanced thermal conductivities of nanofluids containing graphene oxide Nanosheets”, Nanotechnology, 21(5): 055705-1-8.
  9. Shaikh S., Lafdi K., Ponnappan R., (2007). “Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study”, Appl. Phys, 101: 064302-7.
  10. Ding Y., Alias H., Wen D., Williams R.A., (2006). “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)”, International Journal of Heat and Mass Transfer, 49(1-2): 240-250
  11. HB M., Wilson C., Borgmeyer B., Park K., Yu Q., Choi S., Tirumala M., (2006). “Effect of nanofluid on the heat transport capability in an oscillating heat pipe”, Applied Physics Letters, 88: 143116-3.
  12. Yang Y., Zhang Z.G., Grulke E.A., Anderson W.B., Wu G., (2005). “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow”, International Journal of Heat and Mass Transfer, 48(6): 1107-1116.
  13. Zhu H.T., Zhang C.Y., Tang Y.M., Wang J.X., Ren B., Yin Y., (2007). “Preparation and thermal conductivity of suspensions of graphite nanoparticles”, Carbon, 45(1): 226-228.
  14. Ghozatloo A., Shariaty-Niasar M., Rashidi A.M., (2014). “Investigation of Heat Transfer Coefficient of Ethylene Glycol/ Graphenenanofluid in Turbulent Flow Regime”, Int. J. Nanosci. Nanotechnol., 10(4): 237-244.
  15. Wei Y., Huaqing X., Xiaoping W., Xinwei W., (2011). “Significant thermal conductivity enhancement for nanofluids containing grapheme Nanosheets”, Physics Letters A, 375(10): 1323–1328.
  16. Tessy T.B., Ramaprabhu S., (2010). “Investigation of thermal and electrical conductivity of graphene based nanofluids”, Applied Physics, 108: 124308-11.
  17. Gupta S.S., Siva V.M., Krishnan S., Sreeprasad T.S., Singh P.K., Pradeep T., (2011). “Thermal conductivity enhancement of nanofluids containing graphene nanosheets”, Applied Physics, 110: 084302-15.
  18. Ghozatloo A., Shariaty-Niasar M., Rashidi A.M., (2013). “Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability”, International Communications in Heat and Mass Transfer, 42(1): 89–94
  19. Nasiri A., Shariaty-Niasar M., Rashidi A.M., Amrollahi A., Khodafarin R., (2011). “Effect of dispersion method on thermal conductivity and stability of nanofluid”, Experimental Thermal and Fluid Science, 35(4): 717–723.
  20. Hwang Y.J., Ahn Y.C., Shin H.S., Lee C.G., Kim G.T., Park H.S., Lee J.K., (2006). “Investigation on characteristics of thermal conductivity enhancement of nanofluids”, Curr. Appl. Phys., 6:, 1068–1071.
  21. Chen L.F., Xie H.Q., Li Y., Yu W., (2009). “Carbon nanotubes with hydrophilic surfaces produced by a wet-mechanochemical reaction with potassium hydroxide using ethanol as solvent”, Mater. Lett., 63(1): 45–47.
  22. Tchoul M.N., Ford W.T., Lolli G., Resasco D.E., Arepalli S., (2007). “Effect of mild nitric acid oxidation on dispersability, size and structure of single-walled carbon nanotubes”, Chem. Mater, 19(23): 5765–5772.
  23. Assael M.J., Chen C.F., Metaxa I., Wakeham W.A., (2004). “Thermal conductivity of suspensions of carbon nanotubes in water”, Thermophys, 25(4): 971–985
  24. Guoxiu W., Juan Y., Park J., Xinglong G., Wang B., Liu H., Yao J., (2008). “Facile Synthesis and Characterization of Graphene Nano sheets”, Phys. Chem. C, 112(22): 8192–8195.
  25. Hae M.J., Sung H.C., Seung H.H., (2010). “X-ray Diffraction Patterns of Thermally-reduced Graphenes”, the Korean Physical Society, 57(61): 1649-1652.
  26. Zheng D., Cai Z.B., Shen M.X., Li Z.Y., Zhu M.H., (2016). “Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface”, Applied Surface Science, 387: 66-75.
  27. Lakshminarayanan P.V., Toghiani H., Jr C.U., (2004). “Nitric acid oxidation of vapor grown carbon nanofibers, Carbon”, Carbon, 42(12-13): 2433–2442.
  28. Pei S., Zhao J., Du J., Ren W., Cheng H., (2010). “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids”, Carbon, 48(15): 4466–4474.
  29. Zhang J., Hongling Z., Quan Q., Yanlian Y., Qingwen L., Zhongfan L., Xinyong G., Zuliang D., (2003). “Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes”, Phys. Chem. B, 107(16): 3712-3718.
  30. Rike Y., Holia O., Sudirman Y., Sait O., Tadahisa I., Jun I.A., (2011). “Analysis of functional group sited on multi-wall carbon nanotube surface”, The Open Materials Science Journal, 5: 242–247.
  31. kyung O.P., Jeevananda T., Nam H.K., Seong K., Joong H.L., (2009). “Effect of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composite”, Scripta Materialia, 60(7): 551–554.
  32. Pan D., Wang S., Zhao B., Wu M., Zhang H., Wang Y., Jiao Z., (2009). “Li Storage properties of disordered graphene nanosheets”, Chemistry of Materials, 21(14): 3136–3142.
  33. Ghozatloo A., Rashidi A.M., Shariaty-Niassar M., (2014). “Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger”, Experimental Thermal and Fluid Science, 53: 136–141.
  34. Zhang L., Qing Q.N., Yaqin F., Toshiaki N., (2009). “One-step preparation of water-soluble single-walled carbon nanotubes”, Applied Surface Science, 255(15): 7095–7099.
  35. Hung L.C., Kuo H.L., Shih Y.C., Ching G.C., San D.P., (2007). “Dye adsorption on biosolid adsorbents and commercially activated carbon”, Dyes and Pigments, 75(1): 52-59.
  36. Wei Y., Huaqing X., (2012). “Review Article, A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications”, J. Nanomaterials, 2012: 1-17.
  37. Wang G., Wang B., Park J., Yang J., Shen X., Yao J., (2009). “Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method”, Carbon, 47(1): 68-72.