Growth of CNTs over Fe–Co/Nanometric TiO2 Catalyst by CVD: The Effects of Catalyst Composition and Growth Temperature

Document Type: Research Paper


1 Department of Solid State Physics, Faculty of Basic Science, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran

2 1Department of Solid State Physics, Faculty of Basic Science, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran

3 Research lab of Carbon-based nanostructures, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran


   In this research carbon nanotubes were produced by chemical vapor deposition of acetylene over a mixture of iron and cobalt catalysts supported on nanometric TiO2 and the influences of two synthesis parameters: growth temperature and catalyst composition ratio on properties of end-product carbon nanotubes were investigated. The catalytic basis was prepared by wet impregnation method with different wt% mass ratio of Fe-Co/TiO2=20-0/80, 15-5/80, 10-10/80, 5-15/80 and 0-20/80 wt%. The nanomaterials (catalysts and carbon nanotubes) were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray map of elemental distribution (Xmap) and Raman spectroscopy. The results confirmed that by increasing the growth temperature from 650°C to 800°C; the growth rate, the average diameter and the amount of impurities of grown carbon nanotubes increase and their length and density decrease. Furthermore, it was observed that in comparison with monometallic Fe or Co, bimetallic compositions of these metals exhibit better catalytic activity in growth of carbon nanotubes. The highest yield of carbon nanotubes possessing minimum average diameter was obtained on Fe-Co/TiO2 catalyst with a mass ratio of 10-10/80 wt%.


1.     Iijima, S., (1991). “Helical microtubules of graphitic carbon”, nature, 354: 56-58.

2.     Harris, P. J. F., Harris, P. J. F., (2009). “Carbon Nanotube Science: Synthesis, Properties and Applications”, Cambridge University Press.

3.     Popov, V. N., (2004). “Carbon nanotubes: Properties and application”, Mater. Sci. Eng., R, 43: 61-102.

4.     De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., Hart, A. J., (2013). “Carbon nanotubes: Present and future commercial applications”, Science, 339: 535-539.

5.     Zhang, Q., (2012). “Carbon Nanotubes and Their Applications”, CRC Press.

6.     Tan, C. W., Tan, K. H., Ong, Y. T., Mohamed, A. R., Zein, S. H. S., Tan, S. H., (2012). “Energy and environmental applications of carbon nanotubes”, Environ. Chem. Lett., 10: 265-273.

7.     Verma, P., Saini, P., Malik, R. S., Choudhary, V., (2015). “Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder”, Carbon, 89: 308-317.

8.     Cheng, Y., Xu, C., Jia, L., Gale, J. D., Zhang, L., Liu, C., Shen, P. K., Jiang, S. P., (2015). “Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting”, Appl. Catal., B, 163: 96-104.

9.     Alsawat, M., Altalhi, T., Kumeria, T., Santos, A., Losic, D., (2015). “Carbon nanotube-nanoporous anodic alumina composite membranes with controllable inner diameters and surface chemistry: Influence on molecular transport and chemical selectivity”, Carbon, 93: 681-692.

10.   Hou, P.-X., Liu, C., Cheng, H.-M., (2008). “Purification of carbon nanotubes”, Carbon, 46: 2003-2025.

11.   Hamidi Malayeri, F., Sohrabi, M. R., Ghourchian, H., (2012). “Magnetic multi-walled carbon nanotube as an adsorbent for toluidine blue O removal from aqueous solution”, Int. J. Nanosci. Nanotechnol., 8: 79-86.

12.   Kolangikhah, M., Maghrebi, M., Ghazvini, K., Farhadian, N., (2012). “Separation of salmonella typhimurium bacteria from water using MWCNTs arrays”, Int. J. Nanosci. Nanotechnol., 8: 3-10.

13.   Arora, N., Sharma, N., (2014). “Arc discharge synthesis of carbon nanotubes: Comprehensive review”, Diamond Relat. Mater., 50: 135-150.

14.   Chrzanowska, J., Hoffman, J., Małolepszy, A., Mazurkiewicz, M., Kowalewski, T. A., Szymanski, Z., Stobinski, L., (2015). “Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength”, Phys. Status Solidi B, 252: 1860-1867.

15.   Jourdain, V., Bichara, C., (2013). “Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition”, Carbon, 58: 2-39.

16.   Dupuis, A.-C., (2005). “The catalyst in the CCVD of carbon nanotubes-a review”, Prog. Mater Sci., 50: 929-961.

17.   Yu, Z., Chen, D., Tøtdal, B., Holmen, A., (2005). “Effect of catalyst preparation on the carbon nanotube growth rate”, Catal. Today, 100: 261-267.

18.   Mubarak, N., Abdullah, E., Jayakumar, N., Sahu, J., (2014). “An overview on methods for the production of carbon nanotubes”, J. Ind. Eng. Chem., 20: 1186-1197.

19.   Kumar, M., Ando, Y., (2010). “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production”, J. Nanosci. Nanotechnol., 10: 3739-3758.

20.   Zhang, Q., Huang, J. Q., Zhao, M. Q., Qian, W. Z., Wei, F., (2011). “Carbon nanotube mass production: principles and processes”, ChemSusChem., 4: 864-889.

21.   Lobiak, E., Shlyakhova, E., Bulusheva, L., Plyusnin, P., Shubin, Y. V., Okotrub, A., (2015). “Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes”, J. Alloys Compd., 621: 351-356.

22.   Takagi, D., Hibino, H., Suzuki, S., Kobayashi, Y., Homma, Y., (2007). “Carbon nanotube growth from semiconductor nanoparticles”, Nano Lett., 7: 2272-2275.

23.   Tan, L.-L., Ong, W.-J., Chai, S.-P., Mohamed, A. R., (2013). “Growth of carbon nanotubes over non-metallic based catalysts: A review on the recent developments”, Catal. Today, 217: 1-12.

24.   Chiang, W.-H., Sankaran, R. M., (2009). “Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1− x nanoparticles”, Nat. Mater., 8: 882-886.

25.   Pasha, M. A., Shafiekhani, A., Vesaghi, M., (2009). “Hot filament CVD of Fe–Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas”, Appl. Surf. Sci., 256: 1365-1371.

26.   Mortazavi, S., Reyhani, A., (2008). “The effect of Pd addition to Fe as catalysts on growth of carbon nanotubes by TCVD method”, Appl. Surf. Sci., 254: 6416-6421.

27.   Pasha, M. A., Poursalehi, R., Vesaghi, M., Shafiekhani, A., (2010). “The effect of temperature on the TCVD growth of CNTs from LPG over Pd nanoparticles prepared by laser ablation”, Phys. B, 405: 3468-3474.

28.   Shah, K. A., Tali, B. A., (2016). “Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates”, Mater. Sci. Semicond. Process,41: 67-82.

29.   Tsoufis, T., Xidas, P., Jankovic, L., Gournis, D., Saranti, A., Bakas, T., Karakassides, M. A., (2007). “Catalytic production of carbon nanotubes over Fe-Ni bimetallic catalysts supported on MgO”, Diamond Relat. Mater., 16: 155-160.

30.   Huang, Z., Wang, D., Wen, J., Sennett, M., Gibson, H., Ren, Z., (2002). “Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes”, Appl. Phys. A, 74: 387-391.

31.   Harutyunyan, A. R., Pradhan, B. K., Kim, U., Chen, G., Eklund, P., (2002). “CVD synthesis of single wall carbon nanotubes under “soft” conditions”, Nano Lett., 2: 525-530.

32.   Kichambare, P. D., Qian, D., Dickey, E. C., Grimes, C. A., (2002). “Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene”, Carbon, 40: 1903-1909.

33.   Alvarez, W. E., Kitiyanan, B., Borgna, A., Resasco, D. E., (2001). “Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO”, Carbon, 39: 547-558.

34.   Hernadi, K., Fonseca, A., Nagy, J. B., Siska, A., Kiricsi, I., (2000). “Production of nanotubes by the catalytic decomposition of different carbon-containing compounds”, Appl. Catal. A, 199: 245-255.

35.   Masoumi, M., Mehrnia, M. R., Montazer-Rahmati, M. M., Rashidi, A. M., (2010). “Templated growth of carbon nanotubes on nickel loaded mesoporous MCM-41 and MCM-48 molecular sieves”, Int. J. Nanosci. Nanotechnol., 6: 88-96.

36.   Jabari Seresht, R., Jahanshahi, M., Raoof, J., Khorram, M., (2009). “Optimization of experimental conditions for fabrication of carbon nanotubes based on taguchi robust design method”, Int. J. Nanosci. Nanotechnol., 5: 9-18.

37.   Kathyayini, H., Nagaraju, N., Fonseca, A., Nagy, J., (2004). “Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes”, J. Mol. Catal. A: Chem., 223: 129-136.

38.   Pudukudy, M., Yaakob, Z., Akmal, Z. S., (2015). “Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts”, Appl. Surf. Sci., 330: 418-430.

39.   Chen, H., Wang, L., (2014). “Nanostructure sensitization of transition metal oxides for visible-light photocatalysis”, Beilstein J. Nanotechnol., 5: 696-710.

40.   Soroodan Miandoab, E., Fatemi, S., (2014). “Upgrading TiO2 photoactivity under visible light by synthesis of MWCNT/TiO2 nanocomposite”, Int. J. Nanosci. Nanotechnol., 11: 1-12.

41.   Dresselhaus, M. S., Dresselhaus, G., Saito, R., Jorio, A., (2005). “Raman spectroscopy of carbon nanotubes”, Phys. Rep., 409: 47-99.

42.   Lee, C. J., Park, J., Huh, Y., Lee, J. Y., (2001). “Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition”, Chem. Phys. Lett., 343: 33-38.

43.   Kim, K.-E., Kim, K.-J., Jung, W. S., Bae, S. Y., Park, J., Choi, J., Choo, J., (2005). “Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene”, Chem. Phys. Lett., 401: 459-464.