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Abstract 
  Spreading and coating of nano and micro droplets on solid surfaces is important in a wide variety of 

applications including plasma spray coating, ink jet printing, DNA synthesis and etc. In spraying 

processes, most of droplets collide obliquely to the surface. The purpose of this article is to study the 

distribution of nano and micro droplets spreading when droplets impact at an oblique angle. We 

introduce the generalized exponential distribution as a new alternative for spreading data. The 

generalized exponential distribution shares many physical properties of the Weibull distribution which is 

used frequently for engineering data. For shape parameter greater than one, the generalized exponential 

distribution offers increasing hazard function, which is in accordance with the inclined droplet impact in 

plasma coating processes. We apply a number of criteria and model selection tests to evaluate the 

suitability of the generalized exponential distribution to other rival models, such as the Weibull, inverse 

Weibull, Burr III, Burr X,  inverted exponentiated Rayleigh and exponentiated Pareto distributions. The 

analyses results indicate that the generalized exponential distribution shows better results than the other 

distributions for nano and micro droplets spreading data. Finally, graphical displays for informal checks 

on the appropriateness of the generalized exponential distribution in probabilistic assessment of inclined 

impact as well as formal goodness of tests are presented. An important implication of the present study is 

that the generalized exponential distribution, in contrast to other distributions, fits more appropriately in 

the spreading data.  

Keywords: Generalized exponential distribution, Model selection procedures, Oblique collision, 

Plasma spray, Nano and micro droplets. 

 

1. INRODUCTION

   Plasma spray coating could be a method 

by that the extreme temperature of a 

plasma is utilized to melt powders of 

metallic or non-metallic materials and 

spray them onto a solid surface, forming a 

dense thin layer. The method is typically 

used to apply protective coatings on parts 

to protect them from corrosion, erosion 

and high temperatures. Coating layer is 

shaped by impact and spreading of droplets 

on a solid surface. Most droplets collide 

obliquely to the surface and then spread [1] 

(see, Figure 1). The layer shape is 

dependent on distribution of droplets 

spreading [1-3]. Distribution modeling of 

the spreading can play a significant role in 

reducing the extensive experimentation. 

The distribution models will also allow us 

to enhance and optimize the existing 

processes. Oblique impact of nano and 
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micro- droplets and splat formation in 

plasma spray studies can be generally 

categorized into one of two researches: 

modeling of oblique impact by numerical 

analysis or morphology of splats. 

 

   Although the droplets usually impact 

upon a surface obliquely in real situations, 

few studies on the oblique droplet impact 

are found in literature. Kang and Lee [4] 

studied the dynamic behavior of a water 

droplet impinging upon a heated surface. 

Their results showed that droplet behavior 

after impact was greatly influenced by the 

normal momentum of the impinging 

droplet. Kang and Ng [5] estimated the 

effects of the angle of impact on the splat 

final morphology and spreading behavior. 

Their paper presented the spread factors 

and aspect ratios of individual splats at 

different substrate inclinations. Asadi et al. 

[1] studied the inclined impact of a droplet 

on a solid surface in a plasma spray 

coating process using both numerical and 

analytical models. They predicted the 

droplet impact behavior. Asadi and 

Passandideh-Fard [6] studied the 

impingement of a droplet onto a thin liquid 
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Figure 1. Images (3D view and top view) of a zirconium 

droplet impacting on a solid surface in a plasma coating 

process. [1] 

3D view 
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film by numerical simulation. They found 

that the dynamic processes after impact are 

sensitive to the initial droplet velocity and 

the liquid pool depth. They developed 

simple expression that correlate the non-

dimensional parameters involved in the 

droplet impingement onto a thin liquid 

film. Asadi [7] developed a novel 

computational fluid dynamics and 

molecular kinetic theory (CFD-MK) 

method for simulation of a nanodroplet 

impact onto a solid surface. The author 

analyzed the spreading behavior for the 

wettable, partially wettable and 

nonwettable surfaces. Randive et al. [8] 

discussed the implications of wall 

wettability and inclination of the surface 

on droplet dynamics. They observed that 

the effect of inclination of the surface on 

droplet dynamics is more pronounced on a 

hydrophobic surface as compared to a 

hydrophilic surface. Jina et al. [9] studied 

the effects of droplet size and surface 

temperature on the impact, freezing, and 

melting processes of a water droplet on an 

inclined cold surface. They found that the 

increase of droplet size led to the increases 

of spreading time, spreading maximum 

diameter, gliding maximum diameter, and 

maximum displacement of foremost point. 

Aboud and Kietzig [10] applied oblique 

drop impacts which were performed at 

high speeds with mill metric water 

droplets. They applied a linear model to 

define the oblique splashing threshold. 

LeCleara et al. [11] discussed the dynamic 

behavior of water drops impacting on 

inclined superhydrophobic surfaces. Their 

results suggest that the Weber numbers, 

based on the velocity components, affect 

the impact dynamics of a drop such as the 

degree of drop deformation as long as the 

superhydrophobicity remains intact. 

   However, in all previous studies the most 

attention has been targeted on the 

dynamics of droplet impact or splat 

morphology. A literature survey carried 

out by the author indicated lack of 

published information on nano and micro 

droplets oblique impact analyzing by 

statistical distributions. 

   In the present paper, we analyze the data 

of nano and micro droplets oblique impact 

as obtained in Kang literatures [4, 5]. 

Although the Weibull distribution function 

is widely used to model or characterize the 

engineering data, but this distribution has 

certain drawback. For instance, the 

distribution of the mean of independent 

and identically distributed Weibull random 

samples is difficult to obtain. In addition, 

the Weibull distribution with shape 

parameter greater than one cannot be used 

for many engineering data. Therefore, we 

often end up with situations where 

studying of other statistical distributions 

may be required. Gupta and Kundu [12] 

observed that the generalized exponential 

(GE) distribution can be used quite 

effectively to analyze several lifetime data 

in place of Weibull distribution. It has a 

nice physical interpretation. However, no 

study has been carried out to date to show 

the suitability of the GE distribution in the 

spreading data. So, the main aim of this 

paper is to develop the different model 

selection tests and graphical methods for 

investigating the efficiency of the GE 

distribution in spreading data. 

 

2. DIFFERENT RIVAL MODELS 

   In this section, we briefly describe 

different rival models and estimate the 

unknown parameters of them using a 

sample 1( ,..., )nx x x . 

 

2.1. Generalized Exponential 

Distribution 
   The GE distribution is a particular 

member of the general class of 

exponentiated distributions proposed by 

Gupta and Kundu [12]. They observed that 

many properties of GE distribution are 

quite similar to those of a Weibull or a 

gamma family; therefore this distribution 

can be used as a possible alternative to a 

Weibull or a gamma distribution. The GE 

distribution has widespread applications in 

the field of medical, engineering and 
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biological research. Several applications of 

the GE distribution can be found in Pasari 

and Dikshit [13], Panahi and Asadi [14]  

and Gupta and Kundu [15]. The GE 

distribution for 0  and 0  has the 

following density function: 
1( ;  , )  (1 ) , 0x x

GEf x e e              (1) 

   Here   and   are the shape and scale 

parameters respectively. Therefore, the 

maximum likelihood estimators (MLEs) of 

  and  can be obtained by maximizing 

the following log-likelihood function with 

respect to the unknown parameters; 

1 1

( , ) ln( ) ln( )

ln( ) ( 1) ln(1 )i

GE

n n
x

i

i i

L data n n

x e 

   

  

 

 

    
         (2) 

   The MLEs of  and  , say ̂  and ̂  

respectively can be obtained as the 

solutions of 

1

(1 ) 0i

n
x

i

L n
Ln e



 






   




                   (3) 

and 

 
1 1

ln 1 0  
1

i

i

xn n
i

i x
i i

L n x e
x

e






 




 


    

 
 

(4) 

 From (3), we have 

ˆ

1

ˆ

ln(1 )i

n
x

i

n

e







 


                                (5) 

   A simple manipulation of (4) gives rise 

to the equation (6) in terms of a single 

variable  , which can be easily solved 

numerically or using any standard software 

packages such as R. 

ˆ1 1

1

ln ( 1) 0  
1

ln(1 )

i

i

i

xn n
i

i n x
xi i

i

n n x e
x

e
e









 



    




 


                                                                (6) 

   Alternatively, we can estimate   

directly from (2) by maximizing 

1

1 1

ˆ( ) ( , ) ln ln(1 )

ln ln(1 )

i

i

n
x

GE

i

n n
x

i

i i

g L n e

n x e





  

 







 

 
    

 

   



 
       (7) 

It is observed that the ( )GEg   is unimodal. 

Thus, we can find the maximum likelihood 

estimates, by differentiating ( )GEg  with 

respect to   and then equating to zero. We 

have 

1

1

1 1

/(1 )

( )

ln(1 )

0
1

i i

i

i

i

n
x x

i

i
GE n

x

i

xn n
i

i x
i i

n x e e

g

e

x en
x

e

 











 










 



  



   






 
         (8) 

   Equation (8) can be solved using 

different numerical techniques such as 

Newton-Raphson algorithm or by using 

any standard one-dimensional non-linear 

equation solver package. For 

completeness, we have provided the 

Newton-Raphson algorithm as 

1

( )
;     1,2,...

( )

i
i i

i

g
i

g


 





  


                  (9) 

   For solution the above iterative 

procedure, we guess an initial value (0)  

and continue the iterative procedure when

( 1) ( )i i     . Once we get the MLE of   

the MLE of   can be obtained from (5). 

 

2.2. Burr Type X Distribution 
   Burr [16] introduced twelve different 

forms of cumulative distribution functions 

for modeling data. Among those twelve 

distribution functions, Burr Type X, Burr 

Type XII and Burr Type III received the 

maximum attention. Several aspects of the 

Burr Type X and Burr Type XII 

distributions were studied by several 

authors [17-22]. The Burr Type X (BX) 

distribution has the probability density 

function (PDF) for 0x  as 
2 22 ( ) ( ) 1( ; , ) 2  (1 ) , 0x x

BXf x x e e          

                                                              (10) 

   Here,   and  are the shape and scale 

parameters respectively. The MLE of   

and  can be obtained by maximizing the 

log-likelihood function 
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2( )2 2

1 1 1

( , ) ln( ) 2 ln( )

ln( ) ( 1) ln(1 )i

BX

n n n
x

i i

i i i

L data n n

x x e 

   

  

  

 

      

                                                              (11) 

with respect to the   and  . So, if ̂  and 

̂ are the MLE of   and  respectively, 

then 

2ˆ( )

1

ˆ

ln(1 )i

n
x

i

n

e







 


                           (12) 

   Similarly, the MLE of   can be obtained 

by maximizing the following profile log-

likelihood function as 

2

2

( )

1

( )2 2

1 1

ˆ( ) ( , ) ln ln(1 )

2 ln ln(1 )

i

i

n
x

BX

i

n n
x

i

i i

g L n e

n x e





  

 







 

 
    

 
 

   



 
 (13) 

 

2.3. Exponentiated Pareto Distribution 
   Pareto distribution is one of the most 

popular distributions in analyzing the 

skewed data. This distribution received 

attention by the researchers due to its 

broad applications in different fields 

including, insurance, business, economics, 

engineering, reliability, hydrology and 

mineralogy. Moreover, adding one or more 

parameters to a distribution makes it richer 

and more flexible for modeling data. 

Adding a parameter by exponentiation is 

one of the important ways for adding 

parameter(s) to a distribution which 

proposed by AL-Hussaini [23]. By using 

the proposed cumulative distribution 

function (CDF), the probability 

distribution function of the exponentiated 

Pareto (EPA) can be written as:  
1 1( ; , ) (1 ) (1 (1 ) ) ;  

    0,  0,  0

EPAf x x x

x

    

 

      

  

 (14) 

where  and   are the shape parameters. 

Therefore, the MLEs of   and  can be 

obtained by maximizing the following log-

likelihood function with respect to the 

unknown parameters as: 

1 1

( , )  ln ln

( 1) ln(1 ) ( 1) ln(1 (1 ) ).

EPA

n n

i i

i i

L data n n

x x 

   

  

 

 

       
 (15) 

   Differentiating the log-likelihood 

function partially with respect to  and   

and equating them to zero, we obtain 

 

1 1

(1 ) ln(1 )
 ln(1 ) ( 1) 0,

1 (1 )

n n
i i

i

ii i

x xL n
x

x






 




 

 
     

  
 

                                                              (16) 

and 

1

 ln(1 (1 ) ) 0.

n

i

i

L n
x 

 






    


               (17) 

Note that, 

1

ˆ  

ln(1 (1 ) )

n

i

i

n

x 






 

 
                         (18) 

and the MLE of    can be obtained by 

solving 

1

1 1

1

( )  ln ln ln(1 (1 ) )

( 1) ln(1 ) ( 1) ln(1 (1 ) ).

ln(1 (1 ) )

n

EPA i

i

n n
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i

i

g n n x

n
x x

x







 









 



   

      

 



 


                                                              (19) 

 

2.4. Weibull Distribution 
   The Weibull (WE) distribution is one of 

the most popular distributions in analyzing 

the lifetime data. Due to its practicality, it 

can be used for many applications. Since 

then, several authors have discussed its 

properties in a wide range of applications 

[24,25]. The Weibull distribution with the 

shape parameter of 0  and scale 

parameter of 0  has the probability 

density function as; 
1( ; , ) 0 , 0x

WEf x x e
        (20) 

   Here   and  represent the shape and 

scale parameters respectively. The MLE of 

  and  can be obtained by maximizing 

the log- likelihood function 

 

 
1 1

,

1 ln

WE

n n

i i

i i

L data nLn nLn

x x

   

 
 

 

   
              (21) 
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with respect to the unknown parameters. 

Therefore, if ̂  and ̂ are the MLE of   

and   respectively, then 

1

ˆ
n

i

i

n

x







                                              (22) 

   Furthermore, the MLE of   can be 

obtained by maximizing the profile log-

likelihood of  . 

 

2.5. Inverse Weibull Distribution 
   The Inverse Weibull (IWE) distribution 

is the popular distributions in analyzing the 

data with both the monotone and unimodal 

hazard function. The IWE with the shape 

parameter of 0  and scale parameter of 

0  has the probability density function 

as: 
1( ; , ) 0 , 0x

IWEf x x e
    

    (23) 

   The quantities of 0   and 0   are the 

shape and scale parameters, respectively. 

The log-likelihood function of the 

observed data can be written as: 

 

 
1 1

,

1 ln

IWE

n n

i i

i i

L data nLn

nLn x x

  

  

 



    
        (24) 

   By differentiating the log-likelihood 

function with respect to   and   and 

equating the resulting terms to zero, the 

equation can be written as: 

1

ˆ
n

i

i

n

x 









                                            (25) 

   Moreover, the MLE of   can be 

obtained by maximizing the above 

equation to: 

 
1 1

( ) 1 ln
n n

IWE i i

i i

g nLn nLn x x  

 

    
(26) 

 

2.6. Inverted Exponentiated Rayleigh 
   The Inverted Exponentiated Rayleigh 

(IER) distribution has been used quite 

effectively in analyzing various skewed 

lifetime data. This distribution is usually 

considered as an alternative model to 

lognormal, inverse Weibull and 

generalized inverted exponential 

distribution because of similar 

distributional properties. The probability 

distribution function of the IER can be 

written as: 
2 23 / / 1( ; , ) 2 (1 ) ;

      0 , 0

x x
IERf x x e e    

 

    

  (27) 

   The MLE of   and   can be obtained 

by maximizing the log- likelihood function 

 

 
2/

2
1 1

,

1 ln(1 )i

IER

n n
x

i ii

L data nLn nLn

e
x



   


 

 

 

     
          (28) 

   By differentiating the natural logarithm 

of the likelihood function with respect to 

  and  and equating the resulting terms 

to zero, we get 

 

2/

2
1 1

1
ln(1 ) 0i

n n
x

ii i

n
e

x







 

    
             (29) 

2/

1

ln(1 )i

n
x

i

n

e






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
                            (30) 

   The MLE of   can be obtained using 

the similar method. 

 

2.7. Burr Type III Distribution 
   The Burr Type III (BIII) distribution is 

one of the most popular distribution in 

analyzing the real data [26,27]. The 

probability distribution function of the BIII 

is given by  
1 ( 1)( ; , ) (1 ) , 0BIIIf x x x               (31) 

   Here,   and   are two shape 

parameters. The MLE of   and  say ̂  

and ̂ can be obtained similarly. 

 

3. DIFFERENT MODEL SELECTION 

PROCEDURES 
   In this section we describe different 

available criteria for choosing the best 

fitted model to a given dataset. Suppose 

there are two families which are,  

 (.), ( )pF f R f    ,  (.), ( )qG g R g 
    . 

   The problem is to choose the right family 

for a given dataset 1,..., .nx x  The 
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following criteria can be used for model 

selection. 

 

3.1. Akaike’s Information Criterion 
   Consider a sample of independently 

identically distributed (i.i.d.) random 

variables, nXX ,...,1  having probability 

density function of (.)h h .  The 

Kullback-Leibler (KL) information in 

favor of h  against f 
 is defined as: 

( ) ( )
( , ) log ( ) log  

( ) ( )
h

h X h x
KL h f E h x dx

f X f x



 





 
  

 


                                                              (32) 

( , ) 0KL h f    and ( , ) 0KL h f   , implies 

that h f  . The KL divergence is often 

intuitively interpreted as a distance 

between the two probability measures, but 

this is not mathematically a distance; in 

particular, the KL divergence is not 

symmetric. The Akaike [28] introduced the 

Akaike information criterion (AIC) to 

select the best model under parsimony. 

The goal of AIC is to minimize the KL 

divergence of the selected model from the 

true model. Notice that the relevant part of 

the KL divergence is (log ( ))hE f X  which 

has an estimator as: 

ˆ

1

1
log ( )n

n

i

i

f x
n





                                       (33) 

where, ˆ ˆˆ( , )n n n   is the maximum 

likelihood estimator (MLE) of ( , )   . It 

can be considered as an estimator of the 

divergence between the true density and 

the model. Akaike introduced his criterion 

to model selection as: 

ˆ

1

ˆ( ) 2 log ( ) 2n

n
f

n i

i

AIC f x p




              (34) 

where, p is the number of parameters in the 

model. Now choose the family F if 
f gAIC AIC and choose family G 

otherwise.  

 

3.2. Bayesian Information Criterion 
   A popular alternative model selection 

criterion is the Bayesian information 

criterion (BIC) which is defined as [29]: 

ˆ

1

ˆ( ) 2 log ( ) logn

n
f

n i

i

BIC f x p n




         (35) 

where, p and n are the number of 

parameters and sample size respectively.  

The most well-known properties of BIC 

are asymptotic optimality and consistency. 

We choose family F if f gBIC BIC ; 

otherwise we choose family G. 

 

3.3. Kolmogorov- Smirnov (K-S) 

Distance 

   The K-S distance is one of important 

distances between two cumulative 

distribution functions which belongs to the 

family of non-parametric and distribution- 

free goodness-of-fit tests. For computing 

the K-S test, we first construct the 

empirical distribution function for i.i.d. 

random variables 
1,..., nX X as: 

1

1
( )

i

n

n X x

i

F x I
n





                                    (36) 

where, 
iX xI   is the indicator function as: 

1            

0       otherwisei

i

X x

X x
I 


 


                         (37) 

   Now, the corresponding K-S distances 

are calculated as: 

sup ( ) ( )F n
x

D F x F x
 

                            (38) 

sup ( ) ( )G n
x

D G x G x
 

                            (39) 

   To implement this procedure, a candidate 

from each parametric family that has the 

smallest K-S distance should be found and 

then the different best fitted distributions 

should be compared. 

 

3.4. The Total Time on Test (TTT) 

Transform 

   In many applications, there is qualitative 

information about the failure rate function 

shape, which can help in choosing a best 

model. The TTT transform is a very good 

idea about the shape of the hazard function 

of a distribution.  The TTT transform of a 

probability distribution with absolutely 

continuous distribution function F(.) is 

given by 
1 1( ) ( ) / (1)F F Fx H x H                             (40) 
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where, 

 
1( )

1

0
( ) 1 ( ) ;     0 1

F x

FH x F u du u


     . The 

corresponding empirical version of the 

scaled TTT transform is defined as 

: 1:1
1

1

: 1:

1

0:

( 1)( )
( / )

( / ) ;
(1)

( 1)( )

   1,...,  ,   0

i

j n j n

jn

n
n

j n j n

j

n

n j x x
H i n

i n
H

n j x x

i n x












  

 

  

 





                                                              (41) 

   It has been shown by Aarset [30] that the 

TTT transform is convex (concave) if the 

hazard rate is decreasing (increasing). In 

addition, for a distribution with bathtub 

(unimodal) failure rate the scaled TTT 

transform is first convex (concave) and 

then concave (convex).  

 

3.5. The Chi-Square Test 

   The chi-square test is the one of the 

oldest method which is being used for 

goodness of fit. This test uses the observed 

(Oi) and expected frequencies (Ei) of class 

intervals to calculate the chi-square value. 

For computing, initially the sample is 

divided in k different groups and counted 

the number of observations in each group. 

Then, compute the expected number of 

observations in each group based on the 

fitted model of F. we obtain the chi-square 

test between 1{ ,..., }nx x  and the best fitted 

model from the family F as 
2

2
,

1

(O )
k

i i
f data

ii

E

E





                              (42) 

using the results produced by Chernoff and 

Lehmann [31], they observed that under 

the null hypothesis, the test statistic 

converges to a distribution between a chi-

square distribution with k-1 degrees of 

freedom and a chi-square distribution with 

k-s-1 degrees of freedom, where k is the 

number of intervals and s is the number of 

unknown parameters of the fitted model.  

If the chi-square value does not lie in the 

critical region at %  signification level, 

then we conclude that the fitted model fits 

the data reasonably good and hence, it can 

be used to obtain inferential results from 

the considered data set. 

 

4. EXPERIMENTAL RESULTS 

   In this section, we analyze the data of 

inclined ultrafine droplets spreading that 

obtained in Kang [1, 4]. In this data, the 

spread factor , , is defined as the ratio of 

splat diameter to droplet diameter, i.e. 

/e pd D                                                       (43) 

where, ed is the equivalent diameter of the 

elliptical splat area and pD  is the droplet 

diameter before impacting on the substrate. 

The elliptical splat area is converted to an 

equivalent splat of circular shape so that its 

equivalent diameter ed  can be derived. 

The spread factor data measured by means 

of Scanning Electron Microscopy (SEM) 

and high resolution surface profilometry 

and reported in 90 substrate inclination 

angle. Figure 2 shows the SEM images of 

splats that obtained in Kang and Ng [5]. 

 

 
 

Figure 2. SEM examination figures that 

obtained in Kang and Ng [5]. The angles 

of impact are (a) 10°, (b) 20°, (c) 30°, (d) 

40°, (e) 50° and (f) 60°. The direction of 

impact indicated by arrows. 

 

   For this dataset, we have fitted a large 

class of statistical models to identify the 

best fitted model for spreading data. For 

choosing the statistical models, we note the 

following points 

1- We observe that the spreading data 

is always positive and therefore, it is 

reasonable to analyze this data using the 

statistical model, which has support only 

on the positive real axis. Due to this 

            (d)                  (e)                      (f)      

file:///C:/Users/Apple/Desktop/all%20my%20papers%20folder/obliq%20paper/revised/paper%208%20-oblique.docx%23_ENREF_1
file:///C:/Users/Apple/Desktop/all%20my%20papers%20folder/obliq%20paper/revised/paper%208%20-oblique.docx%23_ENREF_2
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property, the statistical models including 

BIII, IER, WE, BX, GE, IWE and EPA 

are considered. 

2- All the distributions have the same 

number of parameters. When the 

alternative distributions have different 

numbers of parameters, the 

appropriateness of the methods is unclear 

because the distribution with the greatest 

number of parameters would maybe have 

an unjust advantage. 

3- We avoid the use of the distribution 

which is the sub distribution of other. In 

this case the results are perhaps 

inappropriate. 

4- For more comparison, we have 

attempted to select the distribution with 

different hazard function properties.  

5- All of the proposed distributions 

have shape parameter which presents the 

shape of the respective density and 

distribution functions. 

   Now, we first estimated the unknown 

parameters of the different statistical 

models. For estimation of parameters, 

maximum likelihood estimation (MLE) 

was used because it has been considered as 

the most effective method. Now for 

comparing spreading data with the 

proposed distribution functions, we 

required some measure of the goodness of 

fit between the functions and data. The 

Akaike information criterion (AIC), 

Bayesian information criterion (BIC), 

maximum likelihood criterion (ln L) and 

Kolmogorov-Smirnov (K-S) distance are 

considered as the well-established model 

selection criteria. The estimated parameter 

values, AIC, BIC and ln L are reported in 

Table 1. Also, the Kolmogorov-Smirnov 

(K-S) distances and the corresponding p-

values are presented in Table 2. From 

Tables 1 and 2, it is observed that  

GE BX IER BIII IWE WE EPAAIC AIC AIC AIC AIC AIC AIC     

GE BX IER BIII IWE WE EPABIC BIC BIC BIC BIC BIC BIC     

ln ln ln ln ln ln lnGE BX IER BIII IWE WE EPAL L L L L L L       

and 
GE BX IER BIII IWE WE EPAK S K S K S K S K S K S K S            

 

   It is clear that the EPA distribution has 

the maximum AIC, BIC, K-S distance and 

it has the minimum likelihood criterion. 

Also, the p-value of the EPA is less than 

significance level (0.05). So, the EPA 

distribution is the worst fitted model 

among different models considered here. 

   In addition, other distributions specially 

BX and GE can be used for modeling the 

spreading data. But, we want to select the 

model which is more economical as 

compared to other alternative models. For 

comparing of these distributions, we 

provide the TTT plot which is a convenient 

tool for examining the nature of the hazard 

rate and accordingly checking for the 

adequacy of a model to represent the 

failure behavior of the data. The TTT plot 

is presented in Figure 3. For the hazard 

function of the GE distribution, we have  

 If 1   the hazard function of GE is 

increasing. 

  For 1  , it has a decreasing hazard 

function. 

   Similarly for BX distribution, if 
1

2
  , 

the hazard function of BX is bathtub type 

and for 
1

2
  , it has an increasing hazard 

function. Therefore from Figure 3, it is 

clear that the empirical hazard function is 

increasing. Also in this data, the GE (

=2.566567×10
8
) and BX (

=2.0318810
4
) have an increasing hazard 

function. Therefore, these distributions fit 

the data reasonably good and hence, it can 

be used quite effectively to analyze the 

data. For more comparison, we present the 

empirical survival function and the fitted 

survival functions in Figure 4 and the P-P 

plot for the BX and GE distributions in 

Figure 5. Figure 4 indicates reasonable. 

match between the empirical survival 

function and the fitted survival functions 

(BX and GE distributions). 
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Table 1. Estimated parameters, AIC, BIC and log-likelihood values for different distributions. 

       Models Parameters   MLE    AIC      BIC Ln L 

BIII   

  

 

1.29121210
11 

1.5288710 

3.379610 3.7620610 -1.489810 

IER   

  

 

1.408610
4
 

3.004110
2
 

 

2.801310 

 

3.183710 -1.200610 

WE   

  
3.2655610

-11
 

1.404410 

 

3.857310 4.239710 -1.728610 

BX   

  
2.0318810

4 

     5896110
-5

 

 

2.794110 3.166510 -1.173710 

      

GE   

  
2.56656710

8
 

       36285510
-5

 

2.667510 3.049910 -1.133710 

      

IWE   

  

 

2.043910
10

 

      1.4165910 

 

3.691510 4.073910 -1.645710 

      

EPA   1.131810 6.183510 6.565910 -2.891710 

   1.181010
9
    

      

 

Table 2. The K-S distances and the corresponding p-values. 

Method BIII IER WE BX GE IWE EPA 

K-S 0.1416 0.1164 0.1713 0.0812 0.0715 0.1692 0.2651 

p-Value 0.2688 0.5076 0.1064 0. 8967 0. 9601 0.1143 0.0018 

 

Table 3. Observed and expected frequencies and chi-squared statistics for GE. 

 

Intervals iO   iE  

2( )i i

i

O E

E


 

 

2  

0.00 – 5.10 5  4.72948 0.015473   
 

1.74634 

5.10 – 5.26 8  8.63239 0.046320 
 

5.26 – 5.42 10  10.5311 0.026782 
 

5.42 – 5.58 11  9.18289 0.35956 
 

5.58-5.74 4  6.60193 1.02546 
 

5.74 – ∞ 12  10.3221 0.27271 
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Figure 3. The scaled TTT transform for spreading data of inclined nano and micro  droplets 

impact. 

 

 

 

Figure 4. Empirical survival function and the fitted survival functions. 

   Also, it is clear from the Figure 5 that the 

data do not deviate dramatically from the 

line for both the distribution. However, the 

BX can be used for modeling the data, but 

a close look at the Figure 5 (also Figure 4) 

indicates that the graph of GE distribution 

is closer to the 45-degree line than the 

graph of BX distribution. So, based on 

these several criteria and graphical method, 

the GE appears to be more appropriate 

statistical distribution. We also present the 

chi-square value along with their observed 

and expected frequencies in Table 3. To 

calculate the chi-square value, we divided 

the cumulative distribution function into 6 

intervals: [0, 5.10], (5.10, 5.26], (5.26, 

5.42], (5.42, 5.58], (5.58, 5.74] and 

(5.74,∞). 

Data 

C
D

F
 

BX distribution 

 

GE distribution 

Empirical function 

i/n 

φ
(i

/n
) 
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Figure 5. The P-P plot for spreading data of inclined ultrafine droplets impact. 

   The chi-square value is 1.74634, which it 

does not lie in the critical regions 
2
3, 6.251 (7.815)   at 0.10 (0.05)   

signification levels. Therefore, based on 

the different criteria, test and graphical 

method, we can say that the GE fits very 

well to the spreading data more than any 

other distribution.  

 

5. CONCLUSIONS 

   In this paper, we had critically analyzed 

the spreading data of inclined nano and 

micro droplets impact, using the large class 

of statistical distributions. We had 

estimated the unknown parameters using 

the maximum likelihood method and then 

had applied five model selection criteria 

and test, namely, the minimum AIC and 

BIC, the minimum Kolmogorov-Smirnov 

distance, maximum log-likelihood value, 

and chi-squared test. It was observed that 

the GE distribution had comparatively 

more appropriate statistical distribution 

function for the spreading data. We also 

had presented different graphical methods 

such as TTT transform, P-P plot and the 

empirical survival function and the fitted 

survival functions. The results showed the 

efficacy of the GE distribution as a 

practical alternative to other popular 

probability models for analyzing the 

spreading data of inclined impact. 
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