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Abstract:
In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method 
to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical 
properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show 
that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also shown that the value 
of compressive Young’s modulus for (5,5) nanotube isgreater thanthat for (9,0) nanotube while thevalue of 
tensile Young’s modulus for (9,0) nanotubeisgreater than that for(5,5) nanotube. The result of our calculations 
shows that thespecific heat capacity of (5,5) and (9,0) nanotubes coincides, therefore we may conclude that 
thespecific heat capacity of nanotubes is independent of their chirality. Furthermore we have found that the 
atoms in the armchair nanotubes are positioned as close as possible in the direction of the nanotube axis, 
therefore they could have more resistant against compressive pressure.
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1.	INTRODUCTION

During	 the	 last	decades,	carbon	nanotubes,	due	 to	
the	 ability	 of	 understanding	 the	 size	 importance	
in	 physical	 properties	 and	 also	 their	 applications	
in	 nanostructure	 materials,	 have	 received	 much	
attentions	[1-5].
Carbon	 nanotubes	 are	 carbon	 based	 structures	
which	have	been	largely	used	in	new	technologies	
because	of	their	specific	electronic	and	mechanical	
properties.	 The	 physical	 properties	 of	 carbon	
nanotubes	will	change	depending	on	the	geometry.	
Varying	 the	geometry	of	 carbon	nanotubes	makes	

it	 possible	 to	 fabricate	 low	 dimensional	 physical	
systems	 in	 order	 to	 achieve	 higher	 advantages	 in	
technology	[6-8].
Numerous studies have been performed to 
determine	 the	 mechanical	 properties	 of	 this	
nano-structured	 material	 [9–13].	 Theoretical	 and	
experimental	 investigation	 indicated	 an	 average	
Young’s	modulus	 of	 around	 1	 TPa	 and	 Poisson’s	
ratio	 of	 0.25–0.28	 for	 single-walled	 carbon	
nanotubes (SWNTs), depending on the CNTs’ 
length,	diameter,	chirality,	sample	synthesis,	type	of	
defect,	measurement	techniques,	and	computational	
theory and parameters.
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The	vibration	behavior	of	carbon	nanotubes	(CNTs)	
has been extensively investigated due to their 
importance	 in	 nano-electro-mechanical	 systems	
(NEMS)	and	nanosensor	application.	
Various	numerical	and	experimental	investigations	
have been reported on the RBM vibrations of 
CNTs.	S.	Basirjafari	et	al	have	analytically	studied	
the	radial	breathing	modes	of	multi-walled	carbon	
nanotubes	[14].	A	theoretical	analysis	of	the	radial	
breathing	mode	(RBM)	of	carbon	nanotubes	(CNTs)	
subjected	to	axial	pressure	has	been	presented	based	
on	an	elastic	continuum	model	by	Xiao-Wen	Lei	et	
al	[15].	They	have	investigated	the	effects	of	axial	
pressure,	wave	numbers	and	nanotube	diameter	on	
the	RBM	frequency.
Carbon nanotubes have the highest tensile strength 
among	the	known	materials	therefore	they	may	be	
considered	 as	 the	 strangest	 material	 ever	 known.	
There	 are	 covalent	 bonds	 between	 carbon	 atoms.	
A	 tensile	 strength	 of	 63Gpa	was	 found	 for	multi-
walled	 carbon	 nanotube	 in	 2000	 [16]	 (about	 a	
thousand times tires).
The	high	thermal	conductivity	in	the	direction	of	the	
nanotube	axis,	which	is	one	of	the	most	important	
properties	 of	 carbon	 nanotubes	 is	 in	 the	 focus	
of	 many	 researches.	 Carbon	 nanotubes	 will	 also	
become	insulators	in	the	directions	perpendicular	to	
the nanotube axis.
The	 specific	 heat	 capacity	 of	 carbon	 nanotubes	 is	
an	 important	 quantity	 in	 industrial	 applications	
and	 also	 experimental	 research.	 The	 specific	 heat	
capacity	 can	 be	 determined	 based	 on	 statistical	
mechanics	calculations.	
Coefficient	of	thermal	expansion	of	carbon	single-
walled	nanotubes	has	been	investigated	analytically	
and	 numerically	 by	Askari	 et	 al	 [17].	 They	 have	
shown	that	the	coefficient	of	thermal	expansion	of	
carbon	 single-walled	 nanotubes	 is	 independent	 of	
their	chirality.
In	 this	 paper	 we	 have	 theoretically	 studied	
mechanical	and	thermal	properties	of	infinite	single	
wall	(5,5)	and	(9,0)	nanotubes.	We	have	calculated	
the phonon dispersion, phonon density of states 
and	specific	heat	capacity	of	 these	nanotubes.	Our	
calculations	 indicate	 that	 the	 Youngs’s	 modulus	
of	 CNTs	 is	 different	 in	 tension	 and	 compression.	
Also	 the	 results	 of	 our	 calculations	 show	 that	 the	

specific	 heat	 capacity	 of	 CNTs	 is	 independent	 of	
their	chirality.

2.	CALCULATION		METHODS

	As	is	well	known	in	harmonic	approximation	a	solid	
consists	of	a	periodic	array	of	atoms	or	ions	that	will	
oscillate	 around	 their	 equilibrium	 positions.	 The	
energy	 needed	 for	 dynamical	 motion	 is	 provided	
by	 the	 solid	 temperature.	 By	 calculating	 the	 total	
energy	of	solid	at	zero	temperature,	we	may	obtain	
structural	 properties	 of	 carbon	 nanotubes	 such	 as	
lattice	equilibrium	constants	and	bulk	modulus.	
The vibrational energy of atoms or ions in a 
dynamical	crystal	at	non-zero	temperature	will	have	
significant	 effects	 on	 the	 mechanical	 and	 thermal	
properties	 of	 crystal	 such	 as	 heat	 capacity	 and	
thermal expansion. 
In	 this	 paper	 Quantum	 ESPRESSO	 package	 has	
been	 employed	 for	 the	 DFPT	 calculations	 while	
the	DFT	part	 of	 the	 calculations	were	done	under	
local	density	approximation	(LDA)	[18].	The	effect	
of	the	internal	electrons on	valence	electronic	states	
is	 taken	 into	 account	 by	 using	 ultra	 soft	 pseudo-
potentials	[19].	
The	chosen	super-cell	was	a	hexagonal	with	14	Å	
sides	so	any	coupling	between	neighbor	SWCNTs	
has	been	eliminated.	In	addition,	the	BZ	integration	
was	 carried	 out	 via	 the	Monkhorst–	 Pack	 scheme	
[20,	 21]	 with	 1×1×12	 k-points.	 The	 convergence	
test	with	0.1	μeV	tolerance	has	been	done	for	total	
energy	according	to	the	plane	wave’s	cut	off	energy	
up	 to	544	eV.	Moreover,	optimization	of	 the	 ionic	
positions,	 lattice	parameters	and	cell	volume	were	
achieved	 after	 the	 relaxation	 when	 all	 forces	 and	
stresses	became	less	than	0.25meV/Å	and	0.05GPa	
respectively.

3.	PHONON		PROPERTIES

Figures	1-2	show	the	phonon	dispersions	along	
the	tube’s	axis	(z	direction)	and	their	DOSs	for	
an	armchair	(5,5)	and	an	zigzag	(9,0)	SWCNTs.
Considering the lowest energy) acoustic (dispersion 
curves ,it is deduced that near the Г) k=0)	point	the	
transverse-acoustic	(TA)	mode	branches	are	doubly	
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degenerated	and	the	second	branches	are	belong	to	
the	longitudinal-acoustic	(LA)	mode.

Figure 1: (a) The calculated phonon 
dispersion relations of an armchair carbon 
nanotube (5,5) plotted in axial q-vector. (b) 
Phonon density of states of (5,5) nanotube.

Figure 2: (a) The calculated phonon dispersion 
relations of an zigzag carbon nanotube (9,0) 

plotted in axial q-vector. (b) Phonon density of 
states of (9,0) nanotube.

Moreover,	 there	 is	 a	 fourth	 acoustic	 mode	 for	
CNTs,	 twisting	 mode	 (TW),	 which	 shows	 an	
ionic	 rotational	wave	 propagation	 along	 the	 tubes	
[22]	and	the	lowest	third	branch	shows	this	mode,	
respectively.	Slopes	of	the	acoustic	branches	around	
the	 Г	 point	 (dω /dk)k=0 give their relevant sound 
velocities.	The	sound	velocities	of	 the	TA	and	LA	
phonons	for	(5,5)	carbon	nanotube	are	estimated	as	
VTA=5.51	km/s	and	VLA=15.127	km/s,	 respectively.	

In	 addition,	 the	 velocity	 of	 the	 twisting	 acoustic	
wave	 is	VTW=14.925	km/s	 for	 (5,5)	nanotube.	The	
sound	velocities	of	the	TA	and	LA	phonons	for	(9,0)	
carbon	nanotube	are	estimated	as	VTA=10.0649 km/s 
and VLA=22.7716	km/s,	respectively.	The	velocity	of	
the	twisting	acoustic	wave	is	VTW=15.428 km/s for 
(9,0)	nanotube.	The	acoustic	velocities	are	reported	
in Table 1.

Table 1: The calculated acoustic velocities of 
(5,5) and (9,0) carbon nanotubes.
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The	 other	 vibrational	 characteristic	 feature	 of	 the	
SWCNTs is their radial breathing mode (RBM) 
frequencies	 (the	 most	 important	 low-frequency	
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Raman	 active	 mode).	 It	 involves	 a	 collective	
movement	 of	 atoms	 towards	 and	 away	 from	 the	
central	axis	and	its	value	is	different	for	each	tube.	
The	 RBM	 frequency	 dependence	 on	 diameter	 of	
SWCNTs	 is	 commonly	 accepted	 via	 an	 empirical	
formula [23]:     
D	is	the	diameter	of	the	nanotube	(Å).
Radial	 breathing	 modes	 calculated	 and	 radial	
breathing	 modes	 obtained	 from	 the	 empirical	
equation	(2)	are	compared	in	table	3.

4.	MECHANICAL	PROPERTIES

The	 main	 mechanical	 characteristics	 of	 the	
SWCNTs	are	Young	modulus,	Y,	and	Poisson	ratio.	
The	Y	value	direction	is	defined	as:	
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Where e is the inserted strain, 0L  is the 
equilibrium	length,	 0A 	is	the	cross-section	and	κ	
is	the	equivalent	elastic	constant	for	longitudinal	

expansion	or	 contraction	of	nanotube.	To	find	
the	 κ	 value,	 we	 plot	 the	 energy	 variations	 vs	

2( ) 2S L= ∆ 	where	 L∆  is the length variation 
of	tubes.	The	κ	value	can	be	calculated	via	the	
relation: E Sκ∆ = 	(elastic	approximation)
Figures	 3	 and	 4	 show	 the	 energy	 variation	 of	
CNT	 (5,5)	 and	 (9,0)	 versus	 S	 in	 tension	 and	
compression.	As	 it	 can	be	seen	 from	 these	figures	
the	 energy	 linearly	 increases	 by	 increasing	 S.	 By	
calculating	 the	 slope	 of	 the	 curve	 we	 can	 obtain	
the	value	of	Young’s	modulus	of	CNTs	 in	 tension	
and	 compression.	However	we	 can	find	 the	 value	
of	Young’s	modulus	Murnaghan	method.	Table.	 4	
indicates	the	results	of	our	calculations.

Figure 3: Energy variation versus 2( ) 2S L= ∆  for 
(5,5) SWCNT: a-tensile state, b-compressive state

The	Y	values	in	third	column	of	table	4	have	been	
obtained	via	 the	Murnaghan	method;	whereas,	 for	
determining	 the	 compressive	 and	 tensile	Y	 values	
(fourth	and	fifth	columns	of	the	table)	we	have	used	
the	 elastic	 approximation	 (Figures	 3-4).	 It	 must	
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Where e  is the inserted strain, 0L  is the equilibrium length, 0A  is the cross-section and κ is the 

equivalent elastic constant for longitudinal expansion or contraction of nanotube. To find the κ 

Table 3: The radial breathing mode (RBM) of (5,5) and (9,0) carbon nanotubes. Number of C atoms in unit 
cell (N). Radius of the nanotube (R).   

Tashakori, et al.



167

be pointed out that there is a very good agreement 
between	average	values	of	 the	4th	and	5th	columns	
and	the	values	of	the	third	column.	As	it	is	expected,	
the	compressive	modulus	values	are	bigger	than	the	
tensile	ones	and	the	6th	column	of	the	table	shows	
their	differences.		

 Figure 4: Energy variation versus 2( ) 2S L= ∆  for
(9,0) SWCNT: a-tensile state, b-compressive state

Another	 important	 mechanical	 property	 of	 a	
material in the linear regime is the Poisson ratio, 
which	 has	 been	 defined	 in	 a	macroscopic	 context	
as	the	negative	ratio	of	the	relative	change	in	radius	
over the relative elongation:
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Where, R0	 and	L0 are relevant unperturbed radius 
and length of the sample.
In	this	regard,	by	consideration	of	an	isolated	tube	
and	 finding	 out	 the	 slope	 of	 its	 radius	 variation	
versus	its	perturbing	unit-	cell	elongation	(Figure	5)	
and	multiply	it	by	(-L0/R0),	it	would	be	possible	to	
calculate	the	Poisson	ratio.	The	results	of	calculation	
for	 the	narrow	SWCNTs	are	shown	 in	 table	5.	As	
this	 table	 shows	 the	 Poisson	 ratios	 for	 the	 zigzag	
(9,0)	nanotube	is	higher	than	that	for	armchair	(5,5)	
nanotube.
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Fig. 4: Energy variation versus 2( ) 2S L   for (9,0) SWCNT: a-tensile state, b-compressive state 

 

Table.4 Young modulus, Y, for (5,5) and (9,0) SWCNTs. The last column shows ∆Y=Ycomperessive-Ytensile 

∆Y(GPa) Y(Tensile)(TPa) Y(compressive) 
(TPa) Y(TPa) R(Å) nanotube 

278.7 0.9557 1.2344 1.0885 3.4017 (5,5) 
39.9 1.0280 1.0679 1.0458 3.5302 (9,0) 
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Where, R0 and L0 are relevant unperturbed radius and length of the sample. 

In this regard, by consideration of an isolated tube and finding out the slope of its radius 

variation versus its perturbing unit- cell elongation (Fig.5) and multiply it by (-L0/R0), it would 

be possible to calculate the Poisson ratio. The results of calculation for the narrow SWCNTs are 

shown in table 5. As this table shows the Poisson ratios for the zigzag (9,0) nanotube is higher 

than that for armchair (5,5) nanotube. 

Table 4: Young modulus, Y, for (5,5) and (9,0) SWCNTs. The last column shows 
∆Y=Ycomperessive-Ytensile

Figure 5: Least square fitting for variation of the narrow (5,5) and 
(9,0) SWCNTs versus their unit-cell elongation  
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Table 5: The poisson is calculated for carbon 
nanotubes

 PoissonR(Å)nanotube
0.1563037353.4017(5,5)
0.2171322763.5302(9,0)

4. SPECIFIC  HEAT 

In	principle, except in very low temperature region 
the phonon	contribution	to	the	specific	heat,	Cv(T) 
of materials is significant. 	 After	 calculating	 the	
phonon	DOS	for	the	narrow	SWCNTs,	we	can	find	
out	 the	 temperature	 dependence	 of	 their	 specific	
heat	according	to	the	following	expression	[27]:	

    (6)

Where	ν	is	phonon’s	frequency,	 ( )g n  is phonon 
DOS	and	 maxn is	the	highest	phonon	frequency	
of	 the	 material	 and	 is	 related	 to	 the	 Debye	
temperature, DQ  ( maxB D hk nQ = ).
The	 temperature	 dependence	 of	 specific	 heat	
for	(5,5)	(armchair)	and	(9,0)	(zigzag)	SWCNT	
is	shown	in	figure	6.	It	is	observed	that	specific	
heat	 exhibits	 almost	 the	 same	 behavior	 with	
temperature for both tube types.

Figure 6: Temperature dependence of specific heat 
of (5,5) and (9,0) carbon nanotube.

5.	CONCLUSION

Our	 results	 for	 radial	breathing	modes	 (RBM)	are	
in	 good	 consistent	with	 the	 experimental	 ones.	 In	
equation	 (2),	 nanotubes	 radii	 are	 the	 parameters	
considered	to	calculate	the	RBM	while	the	chirality	
dependence	 of	 these	 modes	 is	 ignored	 in	 this	
equation.	 Our	 theoretical	 results	 predict	 that	 the	
RBM	depends	on	the	chirality.	The	most	important	
application	of	RBM	is	in	nanotubes	purification.
The	Young’s	modulusfor	(5,5)	and	(9,0)	nanotubes	
are	 greater	 than	 1Tpa,	 based	 on	 our	 calculations.
The	 value	 of	 compressive	 Young’s	 modulus	 for	
(5,5)	nanotube	is	greater	than	that	for	(9,0)	nanotube	
while	the	value	of	tensile	Young’s	modulus	for	(9,0)	
nanotube	is	greater	than	that	for	(5,5)	nanotube.
We	 have	 also	 found	 that	 the	 atoms	 in	 armchair	
nanotubes	 are	positioned	 as	 close	 as	possible	 in	
the	direction	of	the	nanotube	axis,	therefore	they	
could	 have	 more	 resistant	 against	 compressive	
pressure.	 Furthermore	 we	 have	 shown	 that	 the	
atoms	 in	 zigzag	 nanotubes	 are	 positioned	 as	 far	
as	possible	in	the	direction	of	the	nanotube	axis,	
therefore	 they	could	have	more	 resistant	against	
tensile pressure.  
The	 value	 of	 elastic	 constant	 coefficient	 for	 (5,5)	
nanotubes	in	the	direction	of	nanotube	axis	(C33)	is	
completely	different	 in	comparison	with	 the	value	
of	Young’s	modulus.	 Due	 to	 the	 concentration	 of	
atoms	in	the	direction	of	nanotube	axis,	the	elastic	
coefficient	perpendicular	to	nanotube	axis	becomes	
important	 while	 this	 cannot	 be	 observed	 in	 (9,0)	
nanotubes.	Finally	we	have	found	that	the	Poisson	
ratios	 for	 the	zigzag	 (9,0)	nanotube	 is	higher	 than	
that	for	the	armchair	(5,5)	nanotube.
In	 room	 temperature	 (300	 K),	 the	 specific	 heat	
capacity	 per	 mole	 is	 equal	 to	 1R	 (universal	
constant)	which	 is	due	 to	 the	assumption	of	quasi	
one dimensionality of nanotubes.
The	 outcome	 of	 our	 calculations	 shows	 that	 the	
specific	heat	capacity	of	two	(5,5)	nanotube	and	(9,0)	
nanotube	coincides,	therefore	we	may	conclude	that	
the	specific	heat	capacity	of	nanotubes	is	independent	
of	 their	 chirality.	This	 result	 is	 in	 agreement	with	
the	 result	 of	 analytical	 and	numerical	 calculations	
in Ref. [17]
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