

 Int. J. Nanosci. Nanotechnol., Vol. 16, No. 3, Sept. 2020, pp. 167-179

167

Fault Tolerant DNA Computing Based on

Digital Microfluidic Biochips

Maryam Isvandi

Department of Computer Engineering, Lorestan University, Khorramabad, Iran.

(*) Corresponding author: Isvandi.m@lu.ac.ir
(Received: 08 December 2019 and Accepted: 12 June 2020)

Abstract
 Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard

Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to

the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the

living tissue, this type of computation is applied in many application areas such as medical and

engineering. Despite these advantages, DNA computing fault is prone to error. These errors may affect

the entire computation and lead error in final result. Design of tolerant systems is one of the hot topics in

the field of circuit design. The error in DNA computing will appear by a change in the concentration in

compare to a threshold. In this paper, a buffer to modify the level of concentration is introduced and the

number of required buffers in order to reduce the overhead caused by additional buffers in system is

investigated using normal distribution. Designed system will modify any error with 15% changes in

output concentration level in compare to a threshold level using the proposed method, which will

increase the reliability.

Keywords: DNA computing, Microfluidic biochips, Fault tolerant, Reliability, DNA circuit.

1. INRODUCTION

 DNA molecules have been known as the

basic blocks to store the codes for protein

generation and transfer the genetic features

through the generations, but in recent

decades, it is found that DNA molecules

can be used for a new kind of computation

[1]. Leonard Adleman utilized the DNA

molecules to solve the Hamiltonian path

problem [2]. Adleman’s experiments show

that complex problems can be solved using

DNA molecules faster than silicon-based

computers, thanks to the significantly huge

degree of parallelism. DNA computation

made a bridge between computer

engineering, biological and biomedical

sciences. The potential applications of this

kind of processing include medical

therapeutics, pharmacy, solving NP-

Complete/NP-Hard problems and Gen

analysis [3] and [4]. The design methods of

DNA nanostructures have been developed

over the last two decades to realize well-

ordered DNA lattices to organize and

control matter at the Nanoscale [5]. The

following is a brief review of the literature

and previous work on DNA-based logic

gate design. Livstone et al. proposed a

method of implementation for DNA-based

AND/OR functions [6]. They claimed that

their proposed structure, consisting of

micro-reactors along with attached heating

elements towards controlling DNA

annealing process, is capable of solving the

satisfiability problem in linear space and

quadratic time [6]. Sakamoto et al.

proposed the concept of localized DNA

strand displacement, which is a mechanism

for implementing chemical reaction

network on a surface of a DNA Nano-

structure [7]. Localization increases the

relative concentration of strand reaction

thus speeding up the kinetics [8]. Qian et

al. proposed the Seesaw logic gates in

2009 [9] and further improved in 2011

[10]. Their methodology applies a number

of strands to allow for increased scalability

compared with earlier methods. Fan et al.

in [11] proposed a three-input label-

free/enzyme-free majority gate through

DNA hybridization without DNA

168 Isvandi

replacement and enzyme catalysis; further,

the system is capable of implementing

various basic/cascade logic gates.

Recently, DNA logic systems have been

utilized successfully to detect the risky

patterns of nucleotide based cancer

biomarkers (microRNAs) [12] and [13].

Authors of [12] utilized the DNA logic

gates as modules to create molecular

computers with biological inputs. Modular

circuits that recognize microRNA cancer

biomarkers through strand hybridization

activate computation cascades to produce

controlled outputs. Microfluidic biochips

provide the controlled and automated

platforms for performing various

biochemical procedures [14]. These chips

are known as a promising platform for

executing the DNA operations in a

controlled process. In [15] discusses a

flexible configuration platform for

performing a DNA computation on a

microfluidic architecture in order to realize

basic logic structures such as switches,

memories and logic gates; Their proposed

design is capable of programming DNA

strands into various Boolean problems.

However, each technique comes with its

own benefits and drawbacks as follows. A

configurable DNA Architecture (DENA)

and corresponding design methods are

proposed in [16] to improve the feasibility

and cascade-ability of DNA circuits that

provides the basic concepts of configurable

DNA architectures. However, this paper

does not used real system. In fact,

microarchitecture in [16] is used ideally

and free of any fault. Therefore, electrodes

can be used without any condition. But in

reality this may never happen. In the real

implementation various fault may occur in

the processing system based on the DNA

computing. Errors in DNA computing can

be expressed as a reduction in

concentration (Increase is rarely possible).

if concentration decreases slightly, then it

does not affect the output logic. with the

increase in errors (concentration

decreasing), the logic of the output may be

changed. In this paper DNA computing

implemented on microfluidic biochip. In

fact, we used DENA architecture for DNA

computing but not ideally. This paper is

focused on the occurrence of faults that

lead to reduce the output concentration.

These faults are evaluated with two

methods and some solutions are presented

to overcome them. While the concentration

reduction partly affectless on output logic,

the output logic may be error-prone as

concentration increases. The main

concepts are addressed in the following

section which will assist the reader to

arrive at a better understanding of other

sections.

1.1. DNA Logic Circuits

 As mentioned before, operation of a

DNA circuit relates to the reactions

occurred between DNA strands based on

Watson-Crick complementary rules [17].

Each DNA strands composed of a finite set

of Nucleotides; Adenine (A), Guanine (G),

Thymine (T) and Cytosine (C). In DNA

computing everything is encoded in the

form of strands of four alphabets A, T, G,

and C [18].

 Various styles are proposed for DNA-

based logic gate design. However, two

design styles are more popular; Toehold-

mediated design style and Seesaw design

style. These two design styles are

described in the following subsection.

1.2. Toehold-Mediated Logic Gate

Design Style

 Yurkeet.al in [19] reported an interesting

DNA hybridization reaction that realized

the DNA logic gate implementation with

better correctness and speed rather than

existing methods. Their contribution is

based on the fact that the merging

probability of two complement DNA

strands has a reverse dependency to their

length. In other words, smaller

complement strands have more merging

probability than larger strands.

 Authors of [19] used a small-length

strand to accelerate the merging flow of

the DNA strands and he called this strand

International Journal of Nanoscience and Nanotechnology 169

as Toehold that analogue to the primer in

biology sciences. Using the Toehold

strands, improves the controllability of

DNA displacement process and hence

reduces the DNA process time. A simple

example of this method is shown in figure

1. In this figure, each green arc line shows

a single DNA strand whose direction

represents its merging direction (from 5’ to

3’). Labels of complement strands are

represented by quote sign (*) and also

Toehold strands are highlighted by red

color.

Figure 1. Toehold mediated strand

displacement.

 Figure 1-A shows a double strand that is

generated by binding of strands B and

B’C’. This double strand reacts with strand

BC in which C is toehold strand (Figure 1-

B). At first, Toehold C is connected to its

complementary strand C’ (Figure 1-C) and

then strand B of BC strand replace with

strand B in initial double strand. The

resulting output is a single strand B and a

double stranded BC (Figure 1-D).

 This process is termed toehold-mediated

strand displacement. Typical toehold

lengths used for toehold-mediated strand

displacement hybridization reactions range

from 3 to 7 nucleotides.

 Toehold-mediated strand-displacement

enables the implementation of the DNA

circuit without any enzymes for reactions,

so this method is cheaper and faster than

enzyme-based method. The drawback of

this method is that many orthogonal strings

are necessary for large circuit design to

avoid unwanted reactions. Orthogonal

DNA strands are defined as the strands that

cannot be merged to gather because of

their nucleotides’ order.

 Attachment interest of strand for

displacement, which called strand kinetic,

depends on the length and sequence of the

toehold domain. This factor determines the

speed of toehold mediated strand

displacement reactions. Figure 2 shows the

dependency of kinetics to length and type

of nucleotides. In this figure, green graph

shows the kinetics of using a maximally

strong toehold composed of only G/C

nucleotides, the red trace shows the

kinetics of using a toehold composed only

of A/T nucleotides, and the black traces

shows the kinetics of a toehold composed

of roughly equal numbers of all 4

nucleotides [20]. In addition to the type of

nucleotides, number of them are effective.

Figure 2. Summary of strand displacement

rate constants plotted against the invading

toehold length n[20].

 Moreover, according to the [19] and

[20], the DNA reaction rate will be

increased when the number of toehold

domains in a single strands grows. In

addition, domain size is effective in

reaction rate and choice between 4 – 7

nucleotide [20].

1.3. Seesaw Logic Gate

 Qin and Winfree proposed the Seesaw

logic design style at 2009 [14]. A seesaw

logic gate comprises of five kinds of

strands; inputs, outputs, gate, threshold and

fuel in which output strand is produced by

B

B*C*

+
BC

B,

B*C*

B

B

C

B*C*

BC

(A)
(B)

(C)

(D)

170 Isvandi

interaction between input strands with gate

and threshold strands.

 Seesaw gates are designed based on the

toehold-exchange protocol. Input strands

act catalytically, hence a single input

strand can help release multiple output

strands from multiple seesaw gates. The

output strands act as inputs for the next

seesaw gates downstream in the circuit.

 A seesaw gate with n-input and m-

output, consists of n input strands, 3

internal strands and m output strands.

Internal strands include gate, threshold and

fuel strands.

 Figure 3 shows a simplified view of a

single-input and single-output seesaw base

component. The input strand (S2.T.S5)

consists of sub-strands S2, T and S5 in

which T is toehold. Output strand

(S5.T.S6) consists of sub-strands S5, T and

S6. Gate strand is a composite strand

which consists of upper strand S5, T and

S6 and lower strand T*, S5* and T* (a* is

complementary of a) that S5, T and S5*,

T* composed of a double strand.

Threshold strand includes s2* which is a

small portion of starting bases of S2 and

sub-strand T* and double strand S5.S5*.

Fuel strand is a lower strand and consist of

three domains; S5*, T* and S7*. Fuel

strand increases the chance of reactions

and probability of correct output

production. Red numbers within the nodes

or on the wires in Figure 3 indicate relative

concentrations of different initial DNA

species. Negative concentration used for

threshold due to input consumption.

 As shown in Figure 3-B, input strand

reacts with both gate and threshold strands

simultaneously. Input and threshold

reaction rate is higher than input and gate

reaction rate that cause to output strand

production, due to the two toehold (s2* and

T*) that described in Part I-B. Therefore,

threshold concentration is an effective

parameter in output concentration control.

In the other words, the threshold gate can

be thought as a garbage collector that

makes a strand unusable for further

reactions. By using the required number of

seesaw base components (e.g. Figure 3)

and adjusting the concentration of the

threshold gate, both “AND” and “OR”

gates can be constructed [15]. The main

advantage of Seesaw logic gates is cascade-

ability. This advantage is achieved due to

slight loss of output concentration levels.

Figure 3. Details of strands and

operations in the seesaw base component

system [15].

1.4. Digital Microfluidic Platforms for

DNA Computing

 A digital microfluidic biochips (DMFB)

device is a platform for performing

operations of biological assays in an

automatic and controllable manner [21].

These types of chips are comprised of a

small bed made of paper, glass, plastic or

silicon on which various biological

operations towards analyzing human or

animal chemical samples, manipulating

and detecting samples are performed. A

DMFB can manipulate discrete droplets of

liquids on the surface of a two-dimensional

array of electrodes; the actuation of

electrodes can be programmed and

controlled through software-driven

S2
T S5

Input

s2* S5*

S5

T*

S5 T
S6

T* S5* T*

Gate

S5 T

S7

Fuel

-5
1

2

(A)

S2
T S5

W2,5

s2* S5*

S5

T*

S5 T
S6

T* S5* T*

G5:5,6

+
S2

T S5

G2,5:5

T* S5* T*
+ S5 T

S6
W5,6

S2
T S5

W2,5

+

Th2,5:5
S2

T S5

S5*T*s2*
+

S5

Waste Waste

(B)

International Journal of Nanoscience and Nanotechnology 171

electronic control unit. A typical digital

microfluidic biochips (DMFB) device is

comprised of two top and bottom plates;

the top plate is a single continuous

electrode, whereas the bottom plate

consists of an array of electrodes. Both

plates are covered with a dielectric layer

and further a thin hydrophobic layer in

order to allow actuation of droplets and

prevent adhesion of droplets to electrodes.

The droplets are sandwiched between the

gap of the top and bottom plates; the gap is

typically filled with air or a filler fluid such

as silicon oil so that actuation of droplets

on the array of electrodes is further

facilitated. Figure 4 illustrates structure of

EWOD-based digital microfluidic

biochips. One of the main drawbacks of

DNA computing has been historical that

chemical reactions between the DNA

strands are manual operations and do not

seems to be automated easily. Recently,

considerable research is reported on using

the DMFBs as the execution platform of

DNA reactions.

Figure 4. Digital microfluidic biochip

[21].

1.5. DNA-Based Micro-Architecture

 A digital A micro-architecture defines

the building blocks and the configuration

scheme of the components (e.g. Resources

and methods) to realize the target circuit.

An efficient micro-architecture is a

necessary requirement for any automatic or

semi-automatic design and large scale

DNA circuit design. In [16], a micro-

architecture (DENA) has been proposed

enabling the large-scale DNA logic system

design. DENA is an FPGA-induced

architecture that consists of a two

dimensional array of configurable logic

blocks [22]. DENA is regular architecture

consists of the arbitrary number of DENA

Clusters (DC) which can be configured to

implement a 4-input logic function. Figure

5 shows the general structure of DENA

micro-architecture with 2 * 2 DCs. As

shown in this figure, each DC is

implemented on a 3 * 3 grid of a

microfluidic biochip.

DNA Logic

Block

(DLB)

2

4 5

Inverter Step1 8

Convertor

6

Inverter Step2

DNA

Strands

DNA

Strands

D
N

A

S
tr

a
n

d
s

DENA

Cluster

DNA

Strands

D
N

A

S
tr

a
n

d
s

DENA

Cluster

DNA

Strands

DNA

Strands

D
N

A

S
tr

a
n

d
s

DENA

Cluster

DNA

Strands

D
N

A

S
tr

a
n

d
s

DENA

Cluster

D
N

A

S
tr

a
n

d
s

D
N

A

S
tr

a
n

d
s

Figure 5. A simplified view of the DENA

architecture proposed in [16].

 Detailed structure and operation of this

micro-architecture is described in [16]. We

used the DENA [16] as the logical micro-

architecture. We made some improvements

on DENA to increase its capabilities fault

tolerant implementation. At the first of

next section these improvements are

described. The main contributions of this

paper can be defined as follows:

1) To design a buffer gate in modifying of

fluctuations in concentrations: each

buffer gate will occupy two tiles in

microfluidic biochip which can cause

additional system overhead, but it is

necessary to fix errors. Therefore, the

purpose of this paper is to use the

minimum number of buffers in order to

achieve the minimum error rate.

172 Isvandi

2) To address occurrence of a fault in

microfluidic surface using normal

distribution: The probability of

occurring a fault in microfluidic

surface is investigated using two

different approaches. 1- occurrence of

a fault over all chip surface using

normal distribution model. 2-

occurrence of a fault on each electrode

of microfluidic using normal

distribution model.

 Briefly, for implementation of DNA

computing, this paper proposed a solution

for detecting and fixing of fault in

microfluidic biochips

2. MODIFIED MICRO-ARCHITECT-

URE

 One of the main drawbacks of DNA

computing has been historically that

chemical reactions between the DNA

strands are manual operations and do not

seems to be automated easily. However,

considerable successful improvements are

reported recently on using the DMFBs as

the execution platform of DNA reactions.

Recently, microfluidic platforms have been

used for various steps of the DNA

computation. This technology reduces the

time of DNA computations and improve

controllability and automation of DNA

operations [22]. Furthermore, microfluidic

biochips can be utilized for providing

scalability and flexibility demanded by

large-scale DNA logic circuit designs [18].

In fact, microfluidics is the suitable

platform for DNA computing. On the other

hand, one of the challenges is the creation

of errors which has confronted DNA

computing with problem. Occurrence of a

fault in DNA computing based on

microfluidic biochips can be categorized as

follow:

1) Increase the probability of occurring a

fault in unwilling reactions, which

could be due to inadequate system

design or incorrect selection of strands.

In addition, this probability will rise

with an increase in the number of

circuit stages.

2) Creation of fault digital microfluidic

computing.

 Both mentioned cases can lead

concentration reduction in output strand

and create fault in output logic. To

overcome the faults caused by

concentration reduction, this paper

introduced a modifier buffer. In the

following more details on this are

presented.

2.1. Modifier Buffer Design

 Design of buffer gate has been a serious

challenge in DNA logic gate design. We

proposed an innovative buffer gate by

splitting the buffer operation in two stages

(Figure 6). At the first stage, input strand

reacts with threshold, gate and fuel strands

to generate the output of stage 1, which is

then fed into stage 2 as an input. At the

second stage, output of the first stage

reacts with gate to generate the final

output.

 Buffer gate improved concentration level

without logic exchanged. In fact, if

concentration decreases (logic ‘1’) or

increases (logic ‘0’) due to the occurrence

of error and if this change in concentration

is less than 15% of the initial

concentration, then the concentration can

be returned to initial level using modifier

buffer. It is important to note that input

strand into buffer and output stand given

by the second stage of buffer have the

same Nucleotide structure. The structure of

proposed buffer is explained in the

following.

 The input concentration of the first stage

is between 750nM to 900nM (as logic ‘1’)

or less than 250nM (as logic ‘0’), threshold

concentration is 600nM and concentrations

of gate1 and gate2 in step1 are 1000nM

and 1500nM respectively. In addition, fuel

concentration is 2000nM and convertor

gate concentration is 1000 nM. These two

stages are implemented in 2 distinct

microfluidic tiles.

International Journal of Nanoscience and Nanotechnology 173

S5 T
S7

Fuel

S1

T S2

Input

S2 T
S5

T* T*

Gate1

S2* s2* S5*

S5

T*

S5 T
S6

T* S5* T*

Gate2Thereshold

Step1

S6T S2T

S2

S1 T

Convertor Gate

+

S2S5 T

,

Input
Output

S5 T
S6

Output

S5

Step2

Figure 6. Internal operations of the

proposed buffer.

 As shown in Figure 6, input strand is

S1.T.S2, threshold strand includes the

upper strand S5 and lower strand s2.T.S5

and gate1 consists of two strands in upper

and lower, T.S2.T.S5 and S1.T.S5

respectively. Moreover, strands s2 is sub-

strands of S2 and gate2 is Ts5.T.S6.

Interactions of internal strands of buffer

gate are illustrated in Figures 6-A and 6-B.

 These reactions are described as follows.

Step1: Each buffer logic gate has one

input, two gate strands, threshold, fuel,

representation and output strands that

produced after all reactions. Input reacted

with gate 1 then produced upper strand

S2TS5, this strand quickly consumed with

threshold strand (threshold strand consist

of two toehold domain), therefore

threshold concentration can control S2TS5

concentration. Remaining S2TS5 reacted

with Gate 2 and they produce S5TS6

which is output strand; Fuel strand

increases the chance of reactions to reach

final.

Step2: In this proposed buffer, the

structure of input and output strands should

be the same, but the structure of output

strands of a buffer step1 is completely

different from its input structure. Buffer

step2 used for change the formation of

output strands to the input strands of buffer

step1(final output strand is like the first

input strand). which is essential in order to

avoid changes in architectural structure

when using a buffer. The presented

convertor structure consists of one input

strand (S5TS6) and one gate strand

(Convertor Gate). As shown in Figure 6-B,

input strand reacted with lower strand of

convertor gate to produce a double strand

(S5.T.S2) and then output strand is

generated which is an upper strand

(S1.T.S2). The generated strand is a

standard input strand.

 These two steps are implemented on 3

microfluidic tiles. Step1 is performed in

one tile, then it is latched for one cycle in

the next tile and finally step2 is performed

in the new next tile.

 In contrast to the benefits of using buffer

gate, they will occupy three tiles on a

digital microfluidic as mentioned. And in

addition of space occupying, they will add

three delay units to runtime computation as

well. To reduce overhead caused by

additional buffers, it is necessary to use

buffers only when the concentration

changes lead error (only to prevent the

occurrence of error caused by

concentration reduction).

 To minimize the number of modifier

buffers and thereby reduce the overhead

caused by them, it should be noted that

there would be no problem if the decrease

or increase in concentration does not

exceed 15%. Therefore, buffers will only

be used in the computational process if the

total number of faults exceed 15% at the

next stage, in this case, buffers are applied

to previous stage of calculation and modify

the fault concentration level and

consequently fault will not occur in the

next stage.

 There are two approaches to evaluate the

occurrence of fault in system. In the first

approach, it is assumed that in each

electrode with a normal distribution there

will be a fault which leads to decrease or

increase of 0% to 15% in output

concentration (decrease when generating

output in logic ‘1’ and increase when

generating output in logic ‘0’), therefore

10% of the total electrodes in chips are in

fault. Although this approach is not

174 Isvandi

accurate enough, it is very easy to

evaluate. In the second approach, error can

be occurred across the entire surface of

microfluidic chip based on two-

dimensional normal distribution. In this

case, the same as first approach, this fault

will be between 0% and 15% of output

concentration. In the following, both

approaches are explained in more details.

3. FAULT CALCULATION USING

FIRST APPROACH

 As mentioned before, in this case only

10% of the cells have a fault between 0%

and 15%. This fault is appeared by

reduction of output concentration in logic

‘1’ and increase of output concentration in

logic ‘0’. To investigate the fault some

assumptions are required. These

assumptions are mentioned in the

following and have extracted statistically

in numerous experiments:

1) Maximum 10% of cells have a fault at

the surface of microfluidic chip.

2) Error will occur by decreasing or

increasing of 1% to 15% of the initial

concentration.

3) Reduction of fault which is higher than

15% is rarely happened, but if it occurs

then there is no way to compensate.

3.1. Calculation of Minimum Number of

Required Buffer in Order to Avoid

Creating Modifiable Errors in System

 As mentioned previously, with increasing

the number of modifier buffers, system

overhead will be increased (each modifier

buffer consists of two stages which occupy

three electrodes in microfluidic chip. On

the other hand, if we do not use the

modifier buffer then the unmodifiable

errors will be occurred by increasing the

modifiable errors. As already mentioned

above, it is assumed that the cells with

compensated error have a concentration

reduction from 0% to 15%. After doing

measurement, we always have data

(numbers) which we attempt to discover

the relationship between them or classify

them in order to analyze them. To do this,

we need to know how data are distributed.

Simply, data distribution indicates how

spread out or compact our collected data is.

Normal distribution(Gaussian) is one of

the most important distribution in

probability theory.

 Normal distribution has two parameters,

the mean and the standard deviation. In

normal distribution, 68% of data are within

one standard deviation of mean and 95% of

data are within two standard deviation of

mean and 99.7% of data are within three

standard deviation of mean. As mentioned

earlier, the compensated error range is

between 0% and 15%, therefore the mean

and standard deviation are 7.5 and 3.75

respectively using the equations 1 to 4.

(1) µ = (Min + Max)/2

(2) µ = (0+15)/2 = 7.5

(3) σ = (Max – Min)/4

(4) σ = 15/4 = 3.75

where µ and σ indicate mean and standard

deviation respectively. We assumed that

95% of errors are modifiable and are within

two standard deviation of mean, therefore

the standard deviation of 3.75 will be

achieved. Bell curve of normal distribution

of error is shown in Figure 7.

 To achieve the minimum number of

required buffers in order to prevent error in

system, it should be noted that if the errors

are less than the mean, then they can be

removed (creating 7.5% concentration

reduction) after one step (even with

existing of error in the next step) using

modifier buffer gate, but errors that are

higher than the mean (creating

concentration reduction of more than 7.5%)

can be modified using buffers in the current

step. Thus, according to Figure 8, errors

(green dots) that must be modified are

47.5% of the total number of error that

occurred.

International Journal of Nanoscience and Nanotechnology 175

 Since we assumed that 10% of cells are

prone to error in each process, therefore the

number of required buffer is obtained using

equation 5.

(5) 10% * n * 47% = total number

of required buffer

 Where n is the total number of electrodes

at microfluidic surface. The experiment

showed that most of the errors occurred at

the end of the experiment time period on

microfluidic surface, consequently it is

clear that the buffer cells are more likely to

be placed in the last electrodes of

experiments. Although investigation of

error is easy using the mentioned

approach, but it is not accurate enough to

calculate the number of required buffer. In

the second approach, the number of buffers

will be calculated more accurately using

computer simulation.

 To achieve the minimum number of

required buffers in order to prevent error in

system, it should be noted that if the errors

are less than the mean, then they can be

removed (creating 7.5% concentration

reduction) after one step (even with

existing of error in the next step) using

modifier buffer gate, but errors that are

higher than the mean (creating

concentration reduction of more than 7.5%)

can be modified using buffers in the current

step. Thus, according to Figure 8, errors

(green dots) that must be modified are

47.5% of the total number of error that

occurred.

 Since we assumed that 10% of cells are

prone to error in each process, therefore the

number of required buffer is obtained using

equation 5.

(5) 10% * n * 47% = total number

of required buffer

 Where n is the total number of electrodes

at microfluidic surface. The experiment

showed that most of the errors occurred at

the end of the experiment time period on

microfluidic surface, consequently it is

clear that the buffer cells are more likely to

be placed in the last electrodes of

experiments. Although investigation of

error is easy using the mentioned

approach, but it is not accurate enough to

calculate the number of required buffer. In

the second approach, the number of buffers

will be calculated more accurately using

computer simulation.

Figure 7. Normal distribution of

concentration reduction rate in modifiable

errors.

Figure 8. Green dots shows the errors

interval that must be modified by buffers.

4. ERROR-CHECKING USING

SECOND APPROACH

 In the second approach, each electrode

may have an error in the range of 0% to

15%. This error rate occurs with normal

distribution across the entire surface of

microfluidic chip. The occurrence of error

on the surface of microfluidic chip is

shown in Figure 9. The error in each

electrode will be calculated by mapping the

vertical error graph on the surface of that

electrode. As mentioned earlier, in order to

perform calculation, it is essential to move

the droplets containing DNA strands at

level of digital microfluidic. With moving

of droplets in level of digital microfluidic,

we can use modifier buffer whenever the

total number of errors in electrodes reaches

15%.

 Simulation of the proposed algorithms

was investigated using Matlab (version

176 Isvandi

R2019a) tools. Simulation, regarding the

various possibilities for moving was

considered in implementing of each system

on surface of digital microfluidic. The

maximum number of buffers was used as

the number of required buffer in order to

avoid modifiable error in each system. The

result of modifier buffer simulation and

both error-checking approaches are

described in the next section.

Figure 9. normal distribution of the

occurrence of error on surface of digital

microfluidic.

5. SIMULATION RESULT

 As discussed earlier, in this paper a

buffer is presented in order to decrease the

number of error occurring in DNA

computing based on digital microfluidic.

Due to overhead caused by buffer (each

buffer will occupy two tiles on the surface

of microfluidic), we used two approaches

based on normal distribution and we will

estimate the number of buffers and their

location. In the following section the

simulation process and design verification

are evaluated.

5.1. Buffer Gate Simulation Result

 In this paper, we designed a buffer gate

to modify the output concentration level.

As mentioned previously, in the normal

mode when no error is occurred, the output

concentration for logic 1 and logic 0 are

900nm and 100nm respectively. Therefore,

error means that the output concentration is

less than 900nm in logic ‘1’ and more than

100nm in logic ‘0’. The proposed buffer in

this paper modifies the concentration of

more than 750nm and return it back to

more than 900nm and also modifies the

concentration of about 150nm and return it

back to less than 100nm. The circuit are

modeled using the DNA descriptive

language and simulated the descriptions

using VisualDSD toolbox [23]. VisualDSD

is a widely used research tool to simulate

the DNA reactions and computes the

density of output strands based on the

input and internal strands of the circuits.

VisualDSD has three possible choices for

simulation: stochastic, deterministic, and

JIT. In this paper, stochastic modeling was

used because the results of stochastic

modeling are consistent with real

experimental results. Important simulation

parameters are shown in Table 1.

Simulation was done using a stochastic

model and strand concentration listed on

this article in related place. Rate of the

reactions depends on toehold dissociation

and binding rate. This rate is illustrated in

Table 2.

Table 1. Details of Simulation Parameters.
Parameter Value

Temperature 25 ˚C

Strand Length 20 (nt)

Strand’s toehold length 4 (nt)

Strand Length 20 (nt)

 Figure 10 shows the concentration of

buffer gate output strands in step1 that are

generated by VisualDSD. It is worth

noting that inputs have two different

concentrations; 150nM for logics ‘0’ and

750nM for logic ‘1’. As can be seen in this

figure, output concentration changes from

0nM to 100nM for logic “0” and from

900nM to 1000nM for logic “1” that

makes reasonable noise margin.

 Table 3 shows the concentration level of

the strands output when input is changed

from 0nm to 150nm and from 750nm to

900nm for logic ‘0’ and ‘1’ respectively.

As can be seen in this table, level of ‘0’

and ‘1’ outputs have fully acceptable

range.

International Journal of Nanoscience and Nanotechnology 177

Table 2. Toehold Reaction Rate.

Figure 10. Simulation result for modify

concentration with modifier buffer.

 Table 3 illustrates the output

concentration for various range of input

concentration. IC and OC show the

concentration of Input concentration and

output concentration respectively. It is

resulted after VisualDSD simulation tool.

Finally, column LC show the logical

correctness of the buffer output (Logic is

correct if LC ‘yes’). It is worth to note that

high-concentration (>900nM) shows logic

‘1’ and low-concentration (<100nM)

represents logic ‘0’ in this table. Table 3

shows that the logical output of the

modifier buffer is correct (without error).

5.2. Calculating the Number of

Required Buffer Using First Approach

 The number of required buffers to

modify the output concentration level

when an error is occurred are investigated

in the remainder of this section.

Table 3. Input and output concentration

for modifier buffer.

IC OC LC

900 1000 Yes

850 997 Yes

800 990 Yes

770 940 Yes

750 914 Yes

700 890 No

600 708 No

400 240 NO

180 130 No

150 98 Yes

100 68 Yes

95 62 Yes

The number of buffers need to be chosen

in such a way as to reduce the error and

minimizes overhead for the implemented

circuit. To do this, as mentioned in the

previous section, there are two approaches.

In the first approach, the number of

required buffers which is based on the

number of required tiles for

implementation of circuit is calculated

using equation 5, and is shown in table 4,

where #tiles represents the number of

required tiles for implementation of test

bench with different complexity, and #buff

indicates the number of required buffers.

The precise location of these buffers is not

predicted and we can only point out that

due to the increasing number of errors in

the final stages of calculation, it is more

reasonable to use buffers at the final stages

of calculation. We can also maintain a

history of calculation in order to predict

the location of error occurring. Then we

can use buffers in a location with higher

probability of error in regard to the

prediction.

Reaction type Rate

Normal Fast

Toehold

dissociation

0.1126 0.95

Toehold binding 3 * 10 1.2 * 10

178 Isvandi

Table 4. number the required buffer in first

approach
Benchmark Complexity #IO #tiles #buffer

C17 6 7 63 3

C432 160 43 1638 77

C1908 880 58 2646 124

C3540 1669 72 8712 409

C6288 2406 64 16380 770

 Table 4 shows the physical

implementation of IBM benchmarks on

microfluidic biochip. The synthesized

circuits are implemented on a

Programmable Bio-Cell Matrix (PBCM)

architecture [24] using SSS toolbox. As

shown in the table 4 Buffers will take a

small portion of the chip area (about 4.4%)

therefore this overhead can be ignored.

5.3. Checking the Number of Buffers

and Their Location Using Second

Approach

 In the previous section, an approach was

presented in order to reduce the modifiable

error rates in the computational system

implemented on DNA architecture.

Modifier buffers lead overhead in terms of

occupied space and latency in system.

Therefore, decreasing the number of

buffers will increase the system

performance. On the other hand, the

number of modifiable errors will be

increased without using buffers. Table 5

shows the number of required buffers in

regard to the number of applied electrodes

on the surface of digital microfluidics.

Table 5 indicates, as the number of applied

electrodes on the surface of microfluidics

to do calculation increases, the number of

modifier buffers also increases. This result

is quite expected, since the probability of

error occurring follows normal distribution

function on the surface of microfluidics

chip. Therefore, the probability of error

occurring is higher in the central

electrodes. Electrodes were placed in

different locations of microfluidics chip in

order to calculate the number of buffers

and the maximum number was considered

as the number of required buffers.

Table 5. Number of required modifier

buffers in order to reduce the modifiable

error rate.
Benchmark Complexity #IO #tiles #buffer

C17 6 7 63 5

C432 160 43 1638 43

C1908 880 58 2646 98

C3540 1669 72 8712 342

C6288 2406 64 16380 590

That shown in table 5 the number of

required buffers was significantly lower

than the previous approach.

6. CONCLUSION

 The main challenge for design of DNA-

based logic systems is concentration

changes due to error. The concentration

changes lead error in the final result of

calculation. By increasing the size of

implemented system, the probability of

unwilling reactions will be increased and

also we expect some changes in

concentration of final output strands in

compare to concentration. In this paper, a

new buffer gate proposed that enables

cascading of multi-stage logic circuits with

increased the system reliability. The

proposed buffer will occupy two tiles on

the level of digital microfluidic. Therefore,

the area will be increased as the number of

buffers increases. On the other hand, the

reliability will be decreased as the number

of buffers decreases. Therefore, it is

essential to make a trade-off between the

number of buffers and fault tolerantly.

With less than 4.4 tiles overhead,

reliability can be increased significantly.

With The overhead caused by buffer gates

will be reduced with optimal use of them.

Therefore, this paper used the normal

distribution to calculate the minimum

number of buffers in a way that does not

reduce the reliability.

International Journal of Nanoscience and Nanotechnology 179

REFERENCES
1. Currin, A., Korovin, K., Ababi, M., Roper, K., Kell, D. B., Day, P. J., King, R. D., (2017). “Computing

Exponentially Faster: Implementing a Non-Deterministic Universal Turing Machine Using DNA”, Journal

of the Royal Society Interface, 14(128).

2. Adleman, L. M., (1994). “Molecular Computation of Solutions to Combinatorial Problems”, Science,

266(5187): 1021-1024.

3. Sanches, C. A. A., Soma, N.Y., (2016). “A General Resolution of Intractable Problems in Polynomial Time

Through DNA Computing”, BioSystems, 150: 119-131.

4. Zhao, K., Wang, Z., Qin, J., Lu, Y., (2015). “A New Biological DNA Computational Algorithm to Solve

the k-Vertex Cover Problem”, Journal of Computational and Theoretical Nanoscience, 12: 524-526.

5. Seeman, N. C., (2010). “Nanomaterials Based on DNA”, Annual Review of Biochemistry, 79: 65-87.

6. Livstone, M. S., Landweber, L. F., (2004). "Mathematical Consideration in the Design of Micro Reactor-

Based DNA Computers", In 9th International Workshop on DNA Computing (DNA9), 180-189.

7. Sakamoto, k., Gouzu, H., Komiya, k., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M., (2000).

“Molecular Computation by DNA Hairpin Formation”, Science, 288: 1223-1226.

8. Qian, L., Winfree, E., (2014). “Parallel and Scalable Computation and Spatial Dynamics with DNA-Based

Chemical Reaction Networks on a Surface”, DNA Computing and Molecular Programming, 8727: 114-131.

9. Qian, L., Winfree, E., (2009). "A simple DNA Gate Motif for Synthesizing Largescale Circuits", 14th

International Workshop on DNA Computing, 70-89.

10. Qian, L., Winfree, E., Bruck, J., (2011). “Neural Network Computation with DNA Strand Displacement

Cascades”, Nature, 475: 368–372.

11. Fan, D., Wang, K., Zhu, J., Xia, Y., Han, Y., Liu, Y., Wang, E., (2015). “DNA Based Visual Majority Logic

Gate with One-Vote Veto Function”, Journal of Royal Society of Chemistry, .6(3): 1973-1978.

12. Hemphill, J., Deiters, A., (2013). “DNA Computation in Mammalian Cells: MicroRNA Logic Operations”,

Journal of American Chemical Society, 135(28): 10512–10518.

13. Wuab, L., Qu, X., (2015). “Cancer Biomarker Detection: Recent Achievements and Challenges”, Chemical

Society Reviews, 44(10): 2963-2997.

14. Grissom, D., Brisk P., (2012). "Fast Online Synthesis of Generally Programmable Digital Micro-fluidic

Biochips", Proceedings of the 8
th

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign

and System Synthesis, 413-422.

15. Noort, D. V., (2005). "A Programmable Molecular Computer in Microreactors", 10th International

Workshop on DNA Computing (DNA10), 365-374.

16. Beiki, Z., Jahanian, A., (2017). “DENA: A Configurable Micro-architecture and Design Flow for Bio-

medical DNA-based Logic Design”, IEEE Transactions on Biomedical Circuits and Systems, 11(5): 1077-

1086.

17. Amos, M., (1997). "DNA Computation", PhD Thesis, University of Warwick, UK.

18. Cannon, B. L., Kellis, D. L., Davis, P. H., Lee, J., Kuang, W., Hughes, W. L., Graugnard , E., Yurke, B.,

Knowlton, W. B., (2015). “Excitonic AND Logic Gates on DNA Brick Nanobreadboards”, ACS Photonic

Journal, 2(3): 398–404.

19. Yurke, B., Turbereld, A., Mills, A, Simmel, A., Neumann, J., (2000). “A DNA fuelled Molecular Machine

Made of DNA”, Nature, 406: 605–608..

20. Zhang, D.Y., Seelig, G., (2011). “Dynamic DNA Nanothechnology Using Strand-Displacement Reactions”,

Nature Chemistry, 3: 100-113.

21. Abdoli, A., Jahanian, A., (2015). "Fault-Tolerant Architecture and CAD Algorithm for Field-Programmable

Pin-Constrained Digital Microfluidic Biochips", CSI Symposium on Real-Time and Embedded Systems and

Technologies (RTEST), 1-8.

22. Grissom, D., Curtis, D., Windh, S., Phung, C., Kumar, N., Zimmerman, Z., O’Neal, K., McDaniel, J., Liao,

N., Brisk, P., (2015). “An Open-source Compiler and PCB Synthesis Tool for Digital Microfluidic

Biochips”, Integration The VLSI Journal, 51:169-193

23. VisualDSD, (2014). [Online]. Available on: http://dsd.azurewebsites. net/beta.

24. Taajobian, M., Jahanian, A., (2016). “Higher flexibility of reconfigurable digital micro/nano fluidic biochips

using an FPGA-inspired architecture”, Scientia Iranica, 23(3): 1554-1562.

